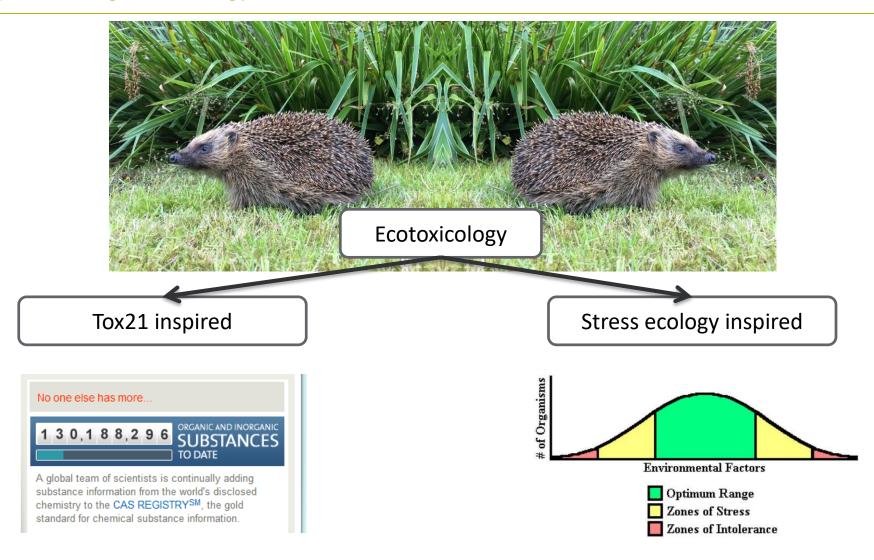
syngenta

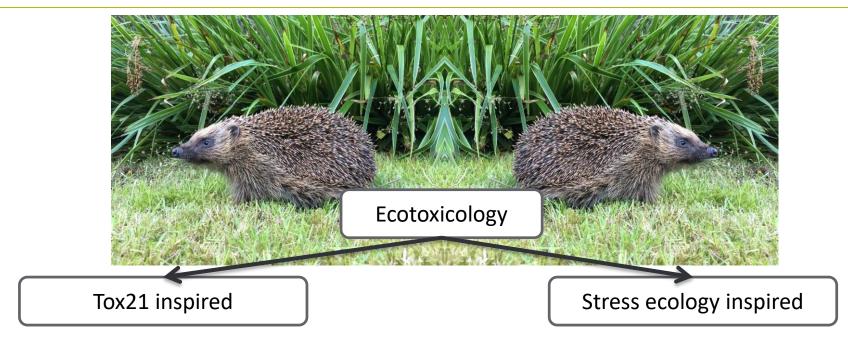
Physiological modes of action: the key to (almost) everything?


Ecotoxicology & Models

Roman Ashauer

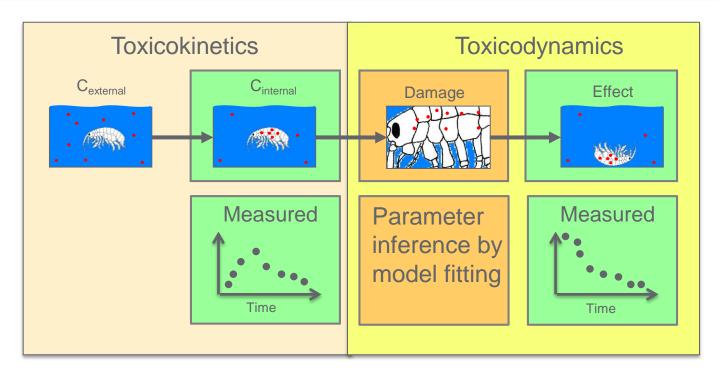
Eco-modelling lead, Syngenta Crop Protection AG, Basel, Switzerland Honorary Fellow, University of York, UK

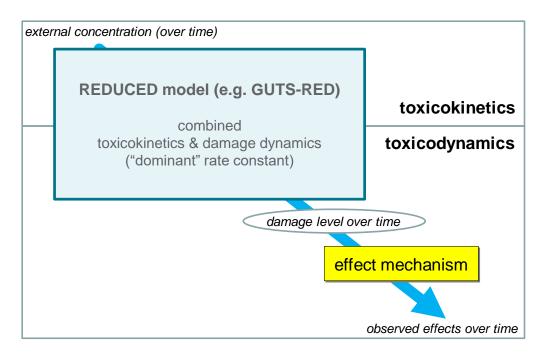
Ecotoxicology: the rift

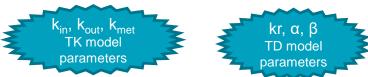

High throughput testing vs ecology?

Ecotoxicology: the rift

High throughput testing vs ecology?


- Ankley et al. 2010, ET&C: <u>Adverse outcome pathways</u>: A conceptual framework to support ecotoxicology research and risk assessment.
- Huang et al. 2016, Nat Commun: Modelling the <u>Tox21 10K chemical profiles</u> for in vivo toxicity prediction and mechanism characterization
- Zhang et al. 2010, JToxEnvHealth: <u>Computational Systems Biology</u> and Dose-Response Modeling in Relation to <u>New Directions in Toxicity Testing</u>
- Gunnarsson et al. 2008, ES&T: <u>Evolutionary conservation of</u> human drug <u>targets</u> in organisms used for environmental risk assessments.
- LaLone et al. 2013, AquatToxicol: <u>Molecular target sequence similarity</u> as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action.


- Van den Brink 2008, ES&T: Ecological risk assessment: From book-keeping to <u>chemical stress</u> <u>ecology</u>
- Relyea & Hoverman 2006, EcolLett: Assessing the <u>ecology in ecotoxicology</u>: a review and synthesis in freshwater systems.
- Rohr et al. 2006, TREE: **Community ecology** as a framework for predicting contaminant effects.
- Rubach et al. 2011, IEAM: Framework for traits-based assessment in ecotoxicology.
- Schäfer et al. 2016, FreshwBiol: Contribution of organic toxicants to <u>multiple stress</u> in river ecosystems.
- SCENIHR, SCHER & SCCS [EFSA] 2012: Addressing the New Challenges for Risk Assessment.



Toxicokinetic-toxicodynamic models

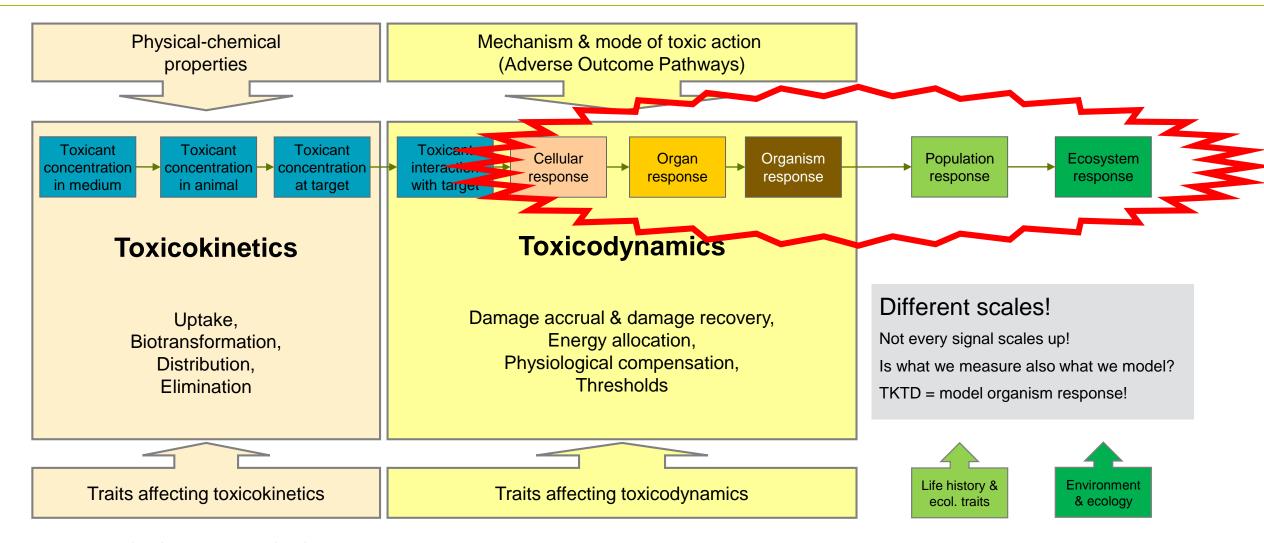
DEBtox and the General Unified Threshold model of Survival GUTS are both TKTD models

Effects: survival

→ GUTS

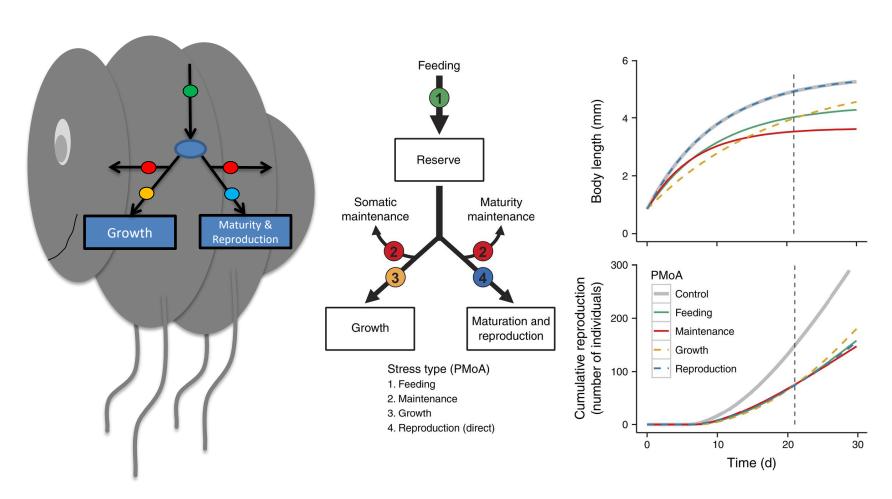
https://leanpub.com/guts_book

Effects: growth & reproduction


→ DEBtox

https://leanpub.com/debtox book

Toxicokinetic-toxicodynamic models


Which level of biological organisation?

DEBtox physiological models of action

How can we identify the pMoA?

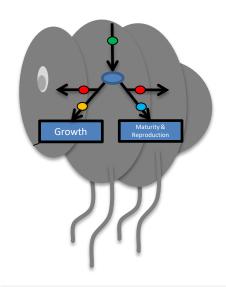
Martin, B., et al., *Limitations of extrapolating toxic effects on reproduction to the population level.* Ecological Applications, 2014. **24**(8): p. 1972-1983.

Identfying pMoA is difficult:

- Growth curves similar shape
- Reproduction curves similar
- Variability in data

Way forward?

- Automate measurements
- Additional information (?)
- New ideas needed!


Ashauer, R. and T. Jager, *Physiological modes of action across species and toxicants: the key to predictive ecotoxicology.* Environ Sci Process Impacts, 2018. **20**(1): p. 48-57.

Duckworth, J., T. Jager, and R. Ashauer, *Automated, high-throughput measurement of size and growth curves of small organisms in well plates.* Scientific Reports, 2019. **9**(1): p. 10.

Physiological mode of action (pMoA) is key

Predicitive ecotox across species & compounds

- 1. Feeding & assimilation [A]
- 2. Maintenance [M]
- 3. Growth [G]
- 4. Reproduction [R]

Ashauer, R. and T. Jager, *Physiological modes of action across species and toxicants: the key to predictive ecotoxicology.* Environ Sci Process Impacts, 2018. **20**(1): p. 48-57.

			Acrobeloides nanus	Caenorhabditis elegans	Dendrobaena octaedra	Lumbricus rubellus	Capitella teleta	Folsomia candida	Daphnia magna	Moina micrura	Mytilus californianus	Mytilus galloprovincialis	Mytilus edulis	Crassostrea gigas	Lymnaea stagnalis	Danio rerio	Strongylocentrotus
	n.a.	Produced water									A+M	A+M					
{	n.a.	pH (ocean acidification)															1
	n.a.	Toxic cyanobacteria								A/M							
	n.a.	Zinc-oxide nanoparticles										A+M					
	Metals ²	Mercury										А		A/M			
	Metals ²	Zinc				М			A/M								
{	Metals ²	Uranium		A, A/M					Α							M+G	
	Metals ²	Copper		A	Α	M+R, A			G								
	Metals ²	Cadmium	G	A, A, A, A/M				Α, Α	А								
	n.a.	Triphenyltin						М									
	n.a.	Tributyltin													Α		
	Phenols	Nonylphenol					G+R										
	Nitriles, Pyrethroids Neutral organics ¹	Fenvalerate Tetradifon							A								
1	ester, halopyrdines Esters, Benzyl	Chlorpyrifos						R									
	Oxime carbamate ester Monothiophosphate	Aldicarb		М													
	Imidazoles, carbamate esters	Carbendazim	А	А													
	Phenols	Pentachlorophenol											A+M				
	Aromatic triazine	Atrazine		M													
	Anilines	3,4-dichloroaniline							R/H								
	Neutral organics	Pentachlorobenzene	Α	G+R													
	Neutral organics	Diquat													A/M		
	Neutral organics	Acetone													Α		
	Neutral organics	Pyridine							М								
	Neutral organics	Pyrene							R								
	Neutral organics	Fluoranthene		G+R, G+R					R								
	Neutral organics	Benzo(k)-fluoranthene														Α	
	Neutral organics	PAH mixture														Α	

What do we know?

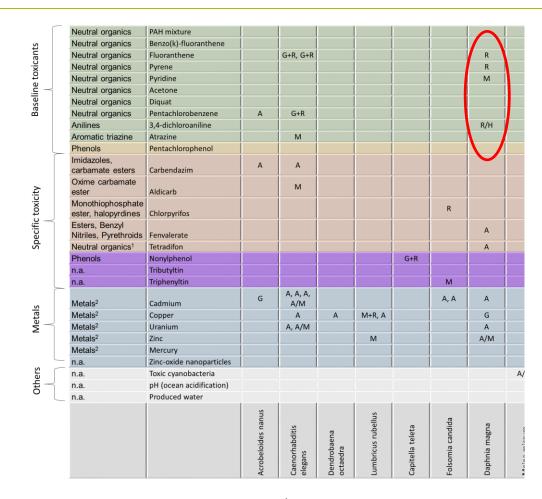
- Limited data coverage
- Lab methods bottleneck

What do we not know?

- How do pMoAs vary across species & compounds?
- Are there patterns?

What do we need to do?

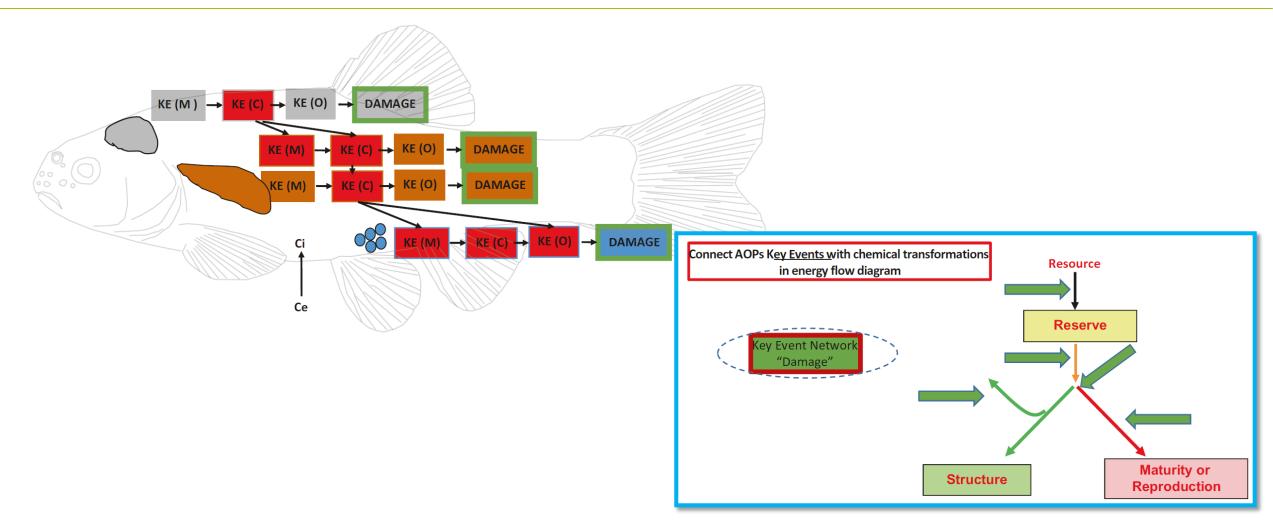
- Automate lab methods
- Find patterns & leverage them for predictive tools
- Link pMoAs to phylogeny, traits & molecular properties

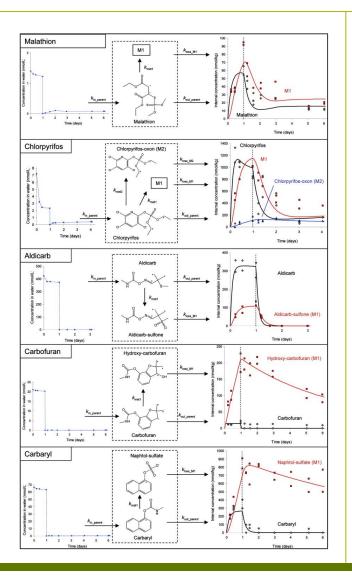


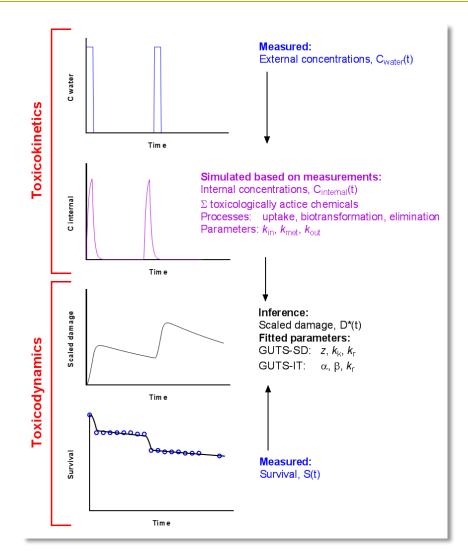
Adverse Outcome Pathways (AOPs) vs Physiological Mode of Action (pMoA)

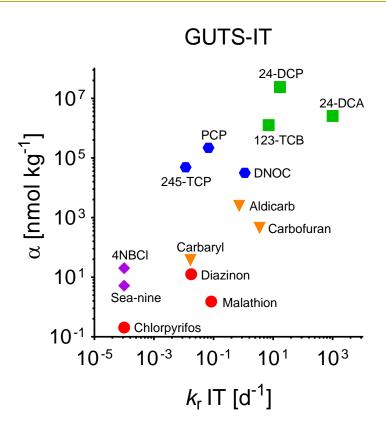
Use pMoAs to test central assumption of AOPs? Can we learn about conserved pathways?

- 1) Are AOPs 'chemical agnostic'?
 - a) If yes, then same MIE \rightarrow same AO (i.e. pMoA)
 - b) If no, then what?
- 2) How do we find out if an AOP differs between species?
 - a) Quantitatively?
 - b) Where do annotations come from?
- 3) Are we interested in the cases where pathways are conserved or when not?
 - a) Rule or exception?
 - b) What's more important for chemical ERA?
 - c) How can we know?

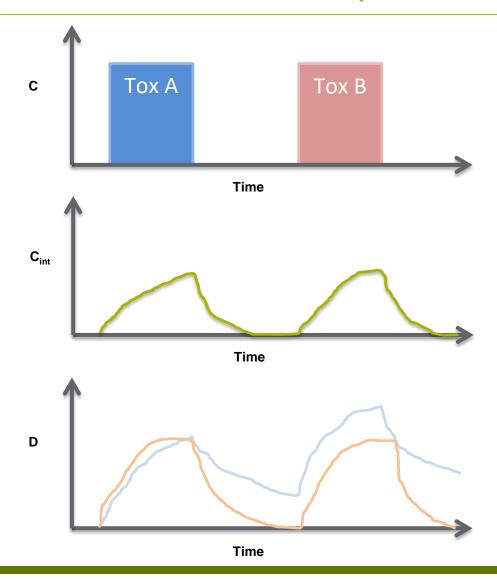


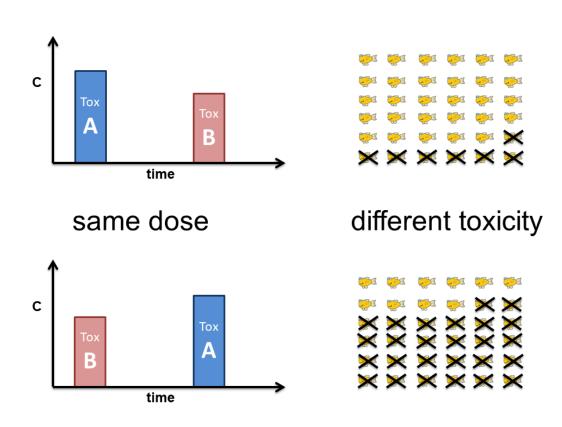

Conceptual diagram...




Murphy, C.A., et al., *Linking adverse outcome pathways to dynamic energy budgets: A conceptual model*, in *A Systems Biology Approach to Advancing Adverse Outcome Pathways for Risk Assessment.* 2018, Springer International Publishing. p. 281-302.

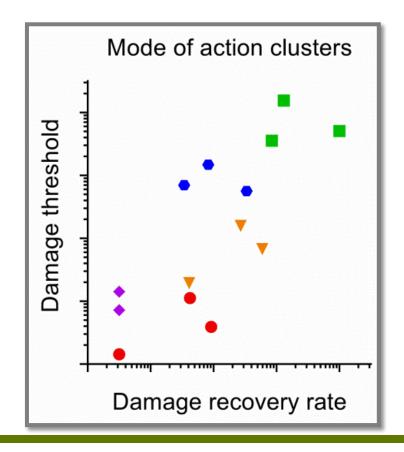
How can we quantify toxicodynamic damage? Example with the General Unified Threshold model of Survival GUTS

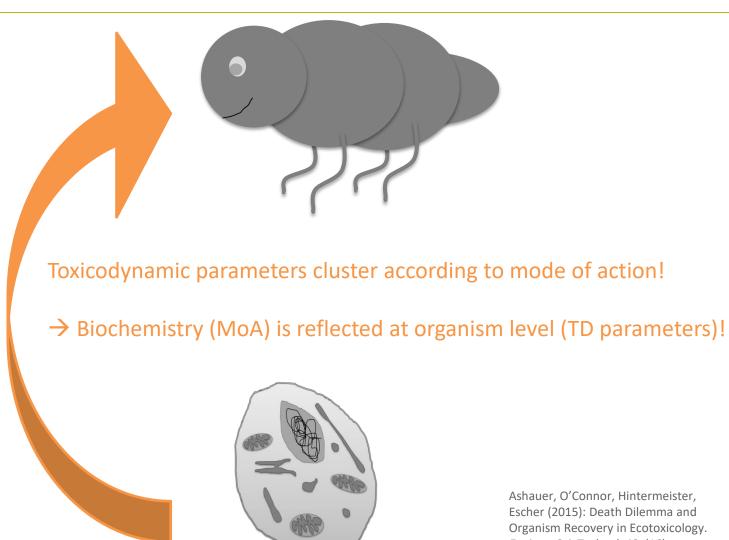



Ashauer, et al. (2012): Significance of Xenobiotic Metabolism for Bioaccumulation Kinetics of Organic Chemicals in *Gammarus pulex*. *Environ*. *Sci. Technol*. 46(6).

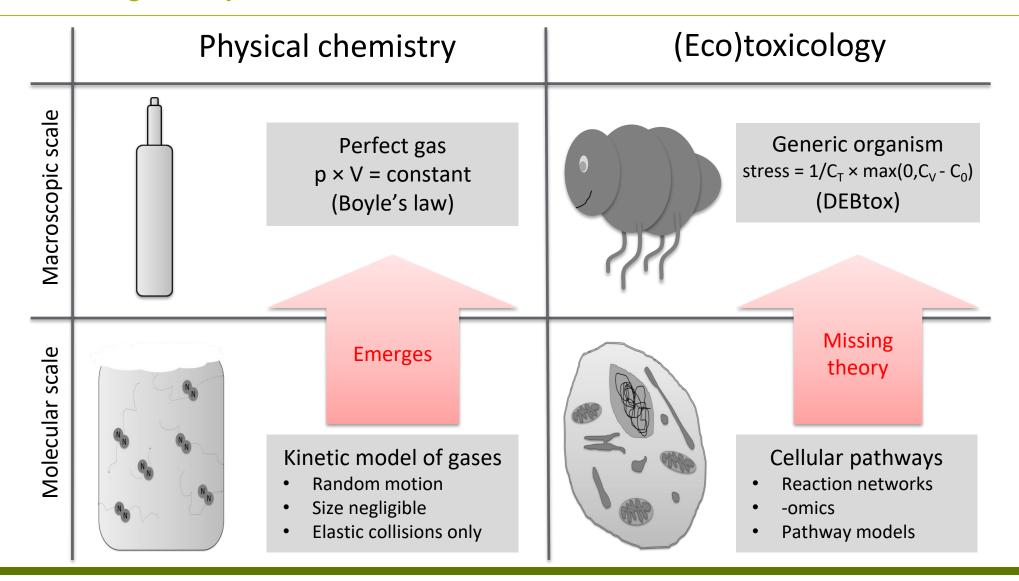
Ashauer, O'Connor, Hintermeister, Escher (2015): Death Dilemma and Organism Recovery in Ecotoxicology. *Environ. Sci. Technol. 49*, (16).

How do we know a toxicodynamic damage state variable is meaningful?




Ashauer R, O'Connor I, & Escher BI (2017): **Toxic Mixtures in Time — The Sequence Makes the Poison.** *Environ. Sci. Technol.* 51(5):3084-3092.

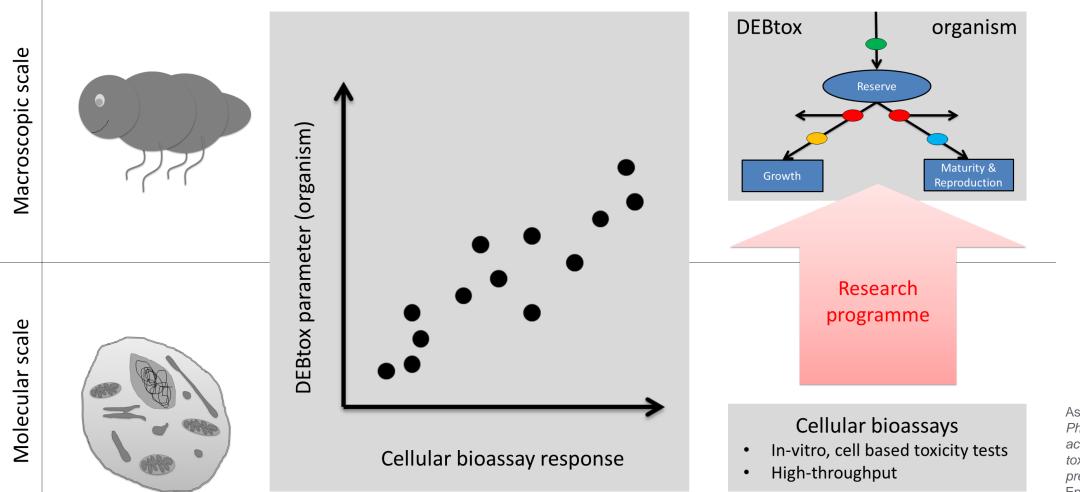
How do we know toxicodynamic damage is related to mode of action?



Ashauer, O'Connor, Hintermeister, Escher (2015): Death Dilemma and Organism Recovery in Ecotoxicology. Environ. Sci. Technol. 49, (16).

Ecotoxicology: towards a predictive science

Missing theory at the core...



Ashauer, R. and T. Jager, Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. Environ Sci Process Impacts, 2018. **20**(1): p. 48-57.

Ecotoxicology: towards a predictive science

There must be a link between what's going on in the cells and the whole organism, *the trick is to find it*! (Tjalling Jager)

Ashauer, R. and T. Jager, Physiological modes of action across species and toxicants: the key to predictive ecotoxicology. Environ Sci Process Impacts, 2018. **20**(1): p. 48-57.

EFSA Scientific Opinion on TKTD models

Models for sub-lethal effects: DEBtox

Ockleford, C., et al., Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA Journal, 2018. 16(8): p. e05377.

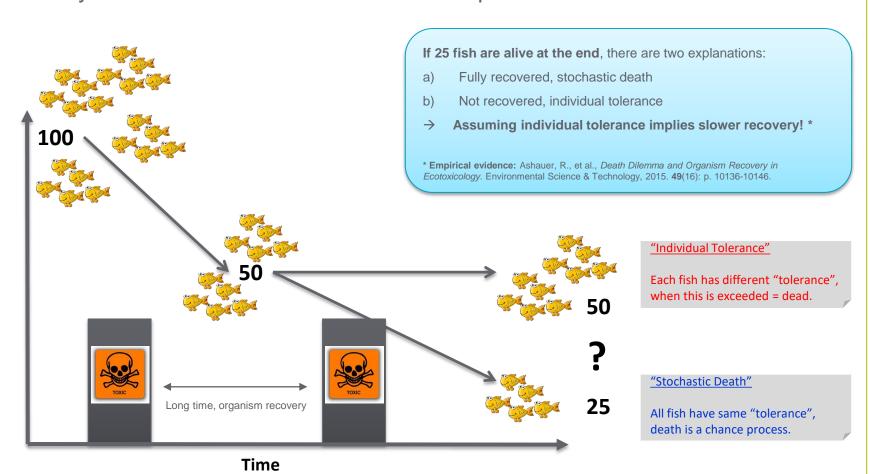
SCIENTIFIC OPINION

"The **GUTS** model and the *Lemna* model are considered **ready to be used** in risk assessment."

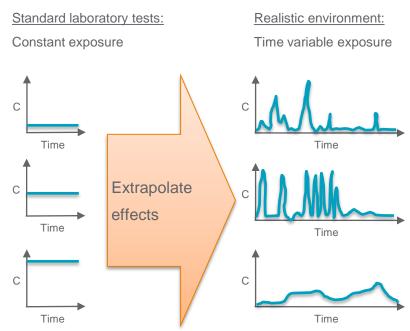
ADOPTED: 27 June 2018 doi: 10.2903/j.efsa.2018.5377

Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms

"...the **DEBtox modelling** approach is currently limited to research applications. However, its **great potential for future use** in prospective ERA for pesticides is recognised."



General Unified Threshold model of Survival (GUTS)


A toxicokinetic-toxicodynamic model

leanpub.com/guts_book

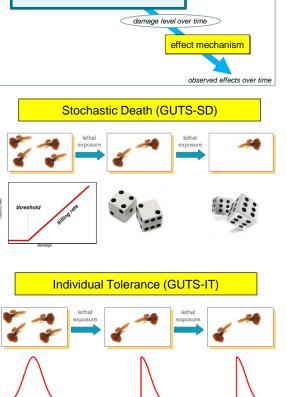
Why GUTS? Because of time variable exposure...

Risk assessment question

Time variable exposure drivers

- Agronomy, landscape, ...
- Rainfall, degradation, distribution, ...
- Feeding habits, movement, ecology, ...

General Unified Threshold model of Survival (GUTS)

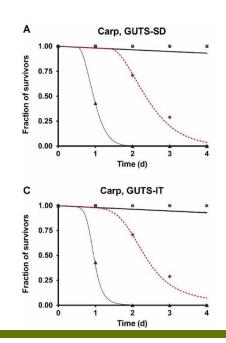

A toxicokinetic-toxicodynamic model

leanpub.com/guts book

Ashauer, Thorbek, Warinton, Wheeler & Maund (2013): A method to predict and understand fish survival under dynamic chemical stress using standard ecotoxicity data. ET&C

Ockleford, C., et al., Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA Journal, 2018. 16(8): p. e05377.

external concentration (over time) **REDUCED (GUTS-RED)** toxicokinetics combined toxicodynamics toxicokinetics & damage dynamics damage level over time effect mechanism observed effects over time Stochastic Death (GUTS-SD)



1) Calibration

- Acute tox (raw data, #, times)
- Preliminary predictions
- Calculate DRT₉₅

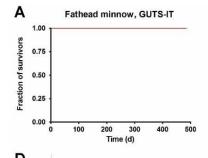
2) Validation

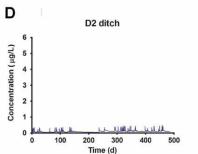
- Pulsed exposures
- Intervals vary (DRT₀₅)

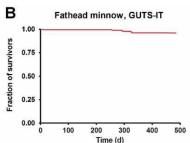
3) Calculate LP50 value

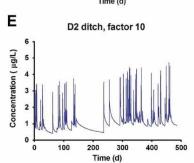
- Concentration time series as input
- Multiply until 50% dead at end
- Multiplication factor = Lethal Profile 50 (LP50)

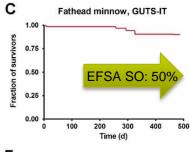
4) Risk assessment scheme in EFSA Scientific Opinion

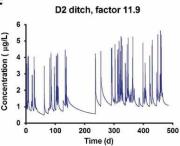

- Do for most sensitive species
- Do for multiple species (SSD like or geomean)

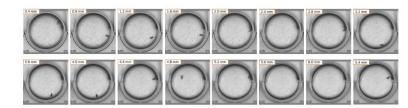

Time-variable exposure

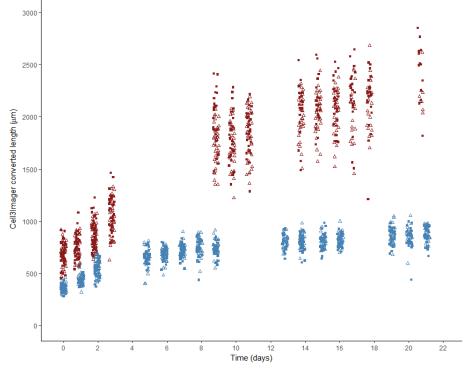

- Birds & mammals
- Terrestrial organisms
- Any acute tox issue...




No guidance, only SO






Physiological mode of action – the key to (almost) everything?

What next? 1st priority: increase throughput of pMoA research & try different measurements?

Automated scanning of well-plates (Cell³imager)

species

- C.dubia
- D.magna

water

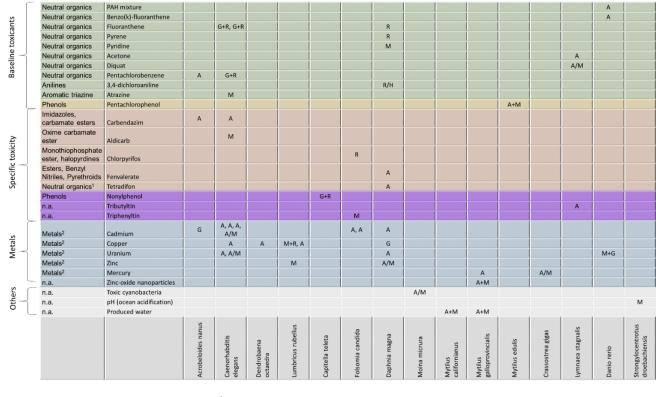
- Buxtor
- △ EPA

Duckworth, J., T. Jager, and R. Ashauer, *Automated, high-throughput measurement of size and growth curves of small organisms in well plates.* Scientific Reports, 2019. **9**(1): p. 10..

Measure respiration (Loligo Systems)

- 24-well glass microplate with individual oxygen sensor spots at the base of each well.
- Well volume is 600 or 1700 μl.
- Fluorescence based O₂-measurement
- Good temporal resolution (e.g. every 30 sec)
- Can upscale

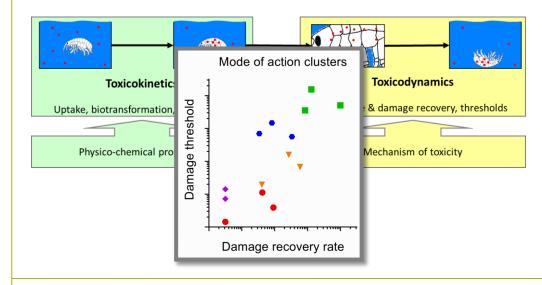
How to increase throughput?


- Select species strategically
- Leverage technology (automation, image analysis, sensors, ...)
- Collaborate with experimentalists

Physiological mode of action – the key to (almost) everything?

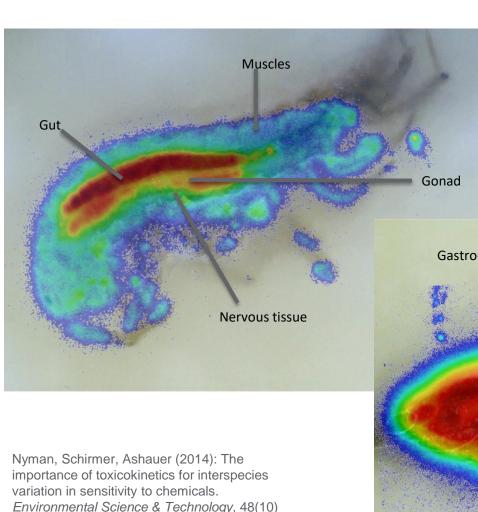
What next? 2nd priority: find patterns?

Compare across sprecies

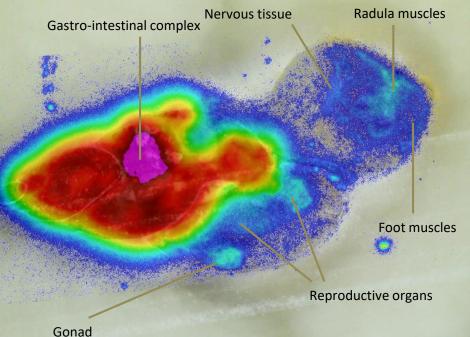


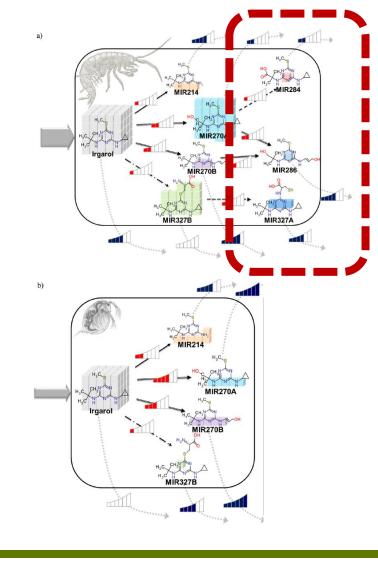
Ashauer, R. and T. Jager, *Physiological modes of action across species and toxicants: the key to predictive ecotoxicology.* Environ Sci Process Impacts, 2018. **20**(1): p. 48-57.

Compare across chemicals


How to look for patterns and why?

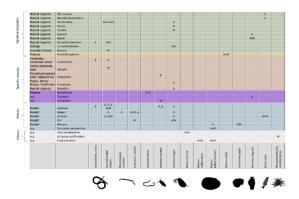
- Study multiple species
- Study strategically selected groups of chemicals
- Patterns can be turned into predictive relationships
- Build prediction tools

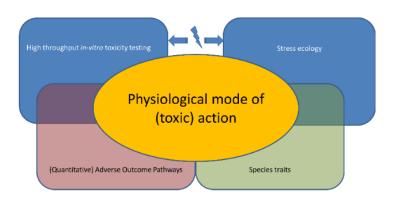



Physiological mode of action – the key to (almost) everything?

What next? 3rd priority: what is the concentration at the target site? A tough challenge...

Jeon J, Kurth D, Ashauer R, Hollender J (2013) Comparative toxicokinetics of organic micropollutants in freshwater crustaceans. ES & T, 47: 8809-8817.





Thank you for your attention!

1) Increase throughput, find patterns

2) Build theory, make predictions

3) Models & experiments

roman.ashauer@syngenta.com

www.ecotoxmodels.org

I'm very grateful for the various organisations that funded this research throughout the years!

These include: Swiss Federal Office for the Environment, Swiss National Science Foundation, SETAC-CEFIC-LRI Innovative Science Award, Unilever, Syngenta, ADAMA, European Commission & Marie-Curie Actions, BBSRC, CEFIC-LRI, EU-IMI, FERA, University of York

