

Polychaetes experience metabolic acceleration as other Lophotrochozoans: inferences on the life cycle of *Arenicola marina* with a Dynamic Energy Budget model

Lola De Cubber^{1*}, Sébastien Lefebvre¹, Théo Lancelot¹, Lionel Denis¹ and Sylvie Gaudron^{1, 2}

¹ Univ. Lille, ULCO, CNRS, UMR 8187 Laboratoire d'Océanologie et de Géosciences (LOG) – 62930 Wimereux, France
 ² Sorbonne Univ., UFR 918 & UFR 927 - 75005 Paris, France

* Corr. author : lola.decubber@gmail.com

De Cubber et al., *in revision*. Ecological Modelling

DEB2019 1-12 April 2019 / Brest (France)

Sixth International Symposium and Thematic School on DEB theory for metabolic organization

> Why Arenicola marina ?

> Why Arenicola marina ?

Ecosystem engineer

Trophic network

Future substitute to human blood ?

Fisheries

Why Arenicola marina ?

Arenicola defodiens Cadman & Nelson-Smith, 1993 → The data relative to the species' life-cycle is anterior to 1993 and incomplete

France

FN

Fisheries

> A Dynamic Energy Budget adapted to *A. marina*'s life-cycle features ?

Standard (std-) DEB model

- > 3 life stages: embryo, juvenile, adult
- isomorphism for all life stages

> A Dynamic Energy Budget adapted to A. marina's life-cycle features ?

	Standard (std-) DEB model	abj-DEB model
\searrow	3 life stages: embryo, juvenile, adult isomorphism for all life stages	 acceleration between birth and metamorphosis (V1-morph)
		before and after acceleration: isomorphy

A Dynamic Energy Budget adapted to A. marina's life-cycle features ?

Standard (std-) DEB model	abj-DEB model
 3 life stages: embryo, juvenile, adult isomorphism for all life stages 	acceleration between birth and metamorphosis (V1-morph)
	before and after acceleration: isomorphy

7

> A Dynamic Energy Budget adapted to *A. marina*'s life-cycle features ?

	Standard (std-) DEB model	abj-DEB model
\checkmark	3 life stages: embryo, juvenile, adult isomorphism for all life stages	 acceleration between birth and metamorphosis (V1-morph) before and after acceleration: isomorphy

> A Dynamic Energy Budget adapted to *A. marina*'s life-cycle features ?

Standard (std-) DEB model	abj-DEB model
 3 life stages: embryo, juvenile, adult isomorphism for all life stages 	 acceleration between birth and metamorphosis (V1-morph) before and after acceleration: isomorphy

Objectives

(1) to calibrate a DEB model for Arenicola marina adapted to its life cycle features

(2) to make predictions about the chronology of the early life stages of *A. marina* and its growth potential according to *in situ* environmental conditions

(3) to compare the parameters with the other Lophotrochozoan species' parameters and discuss the advantages of the use of an abj-model for polychaetes

Type of data	e of data Data	
	Age at trochophore	Х
	Age at birth	X
	Age at metamorphosis	X
	Age at puberty	Х
	Lifespan	Х
Zara variata	Egg diameter	Х
Zero-variate	Total length (L) of the trochophore larva	X
	Total length at birth	X
	Total length at metamorphosis	X
	Trunk length (TL) at puberty	Х
	Total maximum length	Х
	Wet weight (Ww) of an egg	Х
	L-Ww	Х
	TL-Ww	Х
	TL-Wd	X
Uni-variate	t-TL	X
	T-Ww	Х
	Ww-O ₂	Х
	TL-R	Х

Dataset used for the parameter estimation

> Data anterior to 1990 collected in the literature

Type of data	Data	
	Age at trochophore	X
	Age at birth	Х
	Age at metamorphosis	Х
	Age at puberty	X
	Lifespan	Х
Zoro variato	Egg diameter	Х
Zero-variate	Total length (L) of the trochophore larva	Х
	Total length at birth	Х
	Total length at metamorphosis	Х
	Trunk length (TL) at puberty	X
	Total maximum length	X
	Wet weight (Ww) of an egg	Х
	L-Ww	Х
	TL-Ww	Х
	TL-Wd	Х
Uni-variate	t-TL	Х
	T-Ww	X
	Ww-O ₂	Х
	TL-R	Х

Dataset used for the parameter estimation

- > Data anterior to 1990 collected in the literature
- Data communicated by the authors or collected from literature published after 1990

Type of data	Data	abj
	Age at trochophore	Х
	Age at birth	Х
	Age at metamorphosis	X
	Age at puberty	X
	Lifespan	X
Zana variata	Egg diameter	X
Zero-variate	Total length (L) of the trochophore larva	X
	Total length at birth	X
	Total length at metamorphosis	X
	Trunk length (TL) at puberty	X
	Total maximum length	X
	Wet weight (Ww) of an egg	X
	L-Ww	X
	TL-Ww	X
	TL-Wd	Х
Uni-variate	t-TL	X
-	T-Ww	Х
	Ww-O ₂	X
•	TL-R	Х

Dataset used for the parameter estimation

- > Data anterior to 1990 collected in the literature
- Data communicated by the authors or collected from literature published after 1990
- Data obtained in the laboratory or from field data and biometrics

• Oxygen consumption measurements at 3 temperatures

Type of data	Data	abj
	Age at trochophore	Х
	Age at birth	Х
	Age at metamorphosis	Х
	Age at puberty	Х
	Lifespan	Х
Zara variata	Egg diameter	X
Zero-variate	Total length (L) of the trochophore larva	Х
	Total length at birth	Х
	Total length at metamorphosis	Х
	Trunk length (TL) at puberty	Х
	Total maximum length	Х
	Wet weight (Ww) of an egg	Х
	L-Ww	X
	TL-Ww	X
	TL-Wd	Х
Uni-variate	t-TL	Х
	T-Ww	Х
	Ww-O ₂	X
	TL-R	X

Dataset used for the parameter estimation

- > Data anterior to 1990 collected in the literature
- Data communicated by the authors or collected from literature published after 1990
- Data obtained in the laboratory or from field data and biometrics
 - Oxygen consumption measurements at 3 temperatures
 - Collection of females during spawning period (between 2016 and 2018) and biometric measurements

Type of data	Data	abj
	Age at trochophore	Х
	Age at birth	Х
	Age at metamorphosis	Х
	Age at puberty	Х
	Lifespan	Х
Zaro variato	Egg diameter	X
Zero-variate	Total length (L) of the trochophore larva	Х
	Total length at birth	Х
	Total length at metamorphosis	Х
	Trunk length (TL) at puberty	Х
	Total maximum length	Х
	Wet weight (Ww) of an egg	X
	L-Ww	X
	TL-Ww	X
	TL-Wd	Х
Uni-variate	t-TL	Х
	T-Ww	X
	Ww-O ₂	X
	TL-R	X

Dataset used for the parameter estimation

- > Data anterior to 1990 collected in the literature
- Data communicated by the authors or collected from literature published after 1990
- Data obtained in the laboratory or from field data and biometrics
 - Oxygen consumption measurements at 3 temperatures
 - Collection of females during spawning period (between 2016 and 2018) and biometric measurements
 - Biometric measurements on lugworms collected in July 2017

Parameter estimation

- ➢ Good fit : MRE 0.22 /SMSE 0.24
- > Acceleration rate $s_M \approx 10$

Predicted in situ chronology of the first life stages

In situ environmental conditions

Predicted in situ chronology of the first life stages

Predicted in situ chronology of the first life stages

Predicted in situ chronology of the first life stages

Predicted in situ chronology of the first life stages

Life-cycle predictions of the abj-DEB model

Н	0.022 (cm)	5.8 (d)	
В	0.037	13.5	

Predicted in situ chronology of the first life stages

Life-cycle predictions of the abj-DEB model

H	0.022 (cm)	5.8 (d)	
В	0.037	13.5	
J	0.98	148.4	

Predicted in situ chronology of the first life stages

Life-cycle predictions of the abj-DEB model

н	0.022 (cm)	5.8 (d)
В	0.037	13.5
J	0.98	148.4
Р	3.79	489.7 ²³

> Try to use abj models for polychaetes !

Try to use abj models for polychaete species !

Phylogenetic prospect

Try to use abj models for polychaete species !

Phylogenetic prospect

> Try to use abj models for polychaetes !

Phylogenetic prospect

> Try to use abj models for polychaete species !

Phylogenetic prospect

First step towards population modeling and population connectivity studies for management purposes

References

Beukema, J.J., De Vlas, J., 1979. Population parameters of the lugworm *Arenicola marina* living on tidal flats in the Dutch Wadden Sea. Netherlands J. Sea Res. 13, 331–353. https://doi.org/10.1016/0077-7579(79)90010-3

- De Cubber, L., Lefebvre, S., Fisseau, C., Cornille, V., Gaudron, S.M., 2018. Linking life-history traits, spatial distribution and abundance of two species of lugworms to bait collection: A case study for sustainable management plan. Mar. Environ. Res. 140. https://doi.org/10.1016/j.marenvres.2018.07.009
- De Wilde, P.A.W.J., Berghuis, E.M., 1979. Laboratory experiments on growth of juvenile lugworms, *Arenicola marina*. Netherlands J. Sea Res. 13, 487–502. https://doi.org/10.1016/0077-7579(79)90020-6

Farke, H., Berghuis, E.M., 1979a. Spawning, larval development and migration behaviour of Arenicola marina in the laboratory. Netherlands J. Sea Res. 13, 512–528.

Farke, H., Berghuis, E.M., 1979b. Spawning, larval development and migration of Arenicola marina under field conditions in the western Wadden sea. Netherlands J. Sea Res. 13, 529–535.

Kooijman, S.A.L.M., 2010. Dynamic energy budget theory for metabolic organisation. Cambridge University Press.

Kooijman, S.A.L.M., 2014. Metabolic acceleration in animal ontogeny: An evolutionary perspective. J. Sea Res. 94, 128–137. https://doi.org/10.1016/j.seares.2014.06.005

- Lefebvre, A., Guiselin, N., Barbet, F., Artigas, F.L., 2011. Long-term hydrological and phytoplankton monitoring (1992 2007) of three potentially eutrophic systems in the eastern English Channel and the Southern Bight of the North Sea. ICES J. Mar. Sci. 68, 2029–2043.
- Marques, G.M., Augustine, S., Lika, K., Pecquerie, L., Domingos, T., Kooijman, S.A.L.M., 2018. The AmP project: Comparing species on the basis of dynamic energy budget parameters. PLoS Comput. Biol. 14, 1–23. https://doi.org/10.1371/journal.pcbi.1006100

Olive, P.J.W., Craig, S., Cowin, P.B.D., 2006. Aquaculture of marine worms. US 7,004,109 B2.

Reise, K., 1985. Tidal flat ecology - An experimental approach to species interactions, Ecological Studies.

Reise, K., Simon, M., Herre, E., 2001. Density-dependent recruitment after winter disturbance on tidal flats by the lugworm *Arenicola marina*. Helgol. Mar. Res. 55, 161–165. https://doi.org/10.1007/s101520100076

Savelli, R., Dupuy, C., Barillé, L., Lerouxel, A., Guizien, K., Philippe, A., Bocher, P., Polsenaere, P., Le Fouest, V., 2018. On biotic and abiotic drivers of the microphytobenthos seasonal cycle in a temperate intertidal mudflat: a modelling study. Biogeosciences 15, 7243–7271. https://doi.org/10.5194/bg-15-7243-2018

Sixth International Symposium and Thematic School on DEB theory for metabolic organization

Thank you !

A special thank to D. Menu and to V. Cornille for their technical support.

DEB Equations

State variables	Reserve	$\frac{dE}{dt} = \dot{p}_A - \dot{p}_C$	
	Structure	$\frac{dV}{dt} = \frac{\dot{p}_G}{[E_G]}$	
	Offspings or Maturity	$\frac{dE_R}{dt} = \kappa_R \cdot \dot{p}_R \text{ or } \frac{dE_H}{dt} = \dot{p}_H$	
Fuxes	Ingestion	$\dot{p}_X = \{\dot{p}_{Xm}\} \cdot f \cdot V^{2/3}$	
	Assimilation	$\dot{p}_A = \{\dot{p}_{Am}\} \cdot f \cdot V^{2/3}$	
	Mobilisation	$\dot{p}_C = E \cdot \frac{\dot{v} \cdot V^{2/3} \cdot [E_G] + \dot{p}_S}{\kappa \cdot E + [E_G]}$	
	Somatic maintenance costs	$\dot{p}_S = \left[\dot{p}_M \right] \cdot V$	
	Maturity maintenance costs	$\dot{p}_J = \dot{k}_J \cdot E_H$	
	Growth	$\dot{p}_G = \kappa \cdot \dot{p}_C - \dot{p}_S$	
	Reproduction	$\dot{p}_R = (1-\kappa) \cdot \dot{p}_C - \dot{p}_J$	
	Maturity	$\dot{p}_H = (1-\kappa) \cdot \dot{p}_C - \dot{p}_J$	

31

A Dynamic Energy Budget adapted to A. marina's life-cycle features ?

abj and std-DEB parameters

Parameter	Symbol	Val	Unit		
	oy moor	std-model abj-model			
Reference temperature	T_{ref}	293.15	293.15	К	
Searching rate ¹	$\{\dot{F}_m\}$	6.50	6.50	$d^{-1}.cm^{-2}$	
fraction of food energy fixed in $\rm reserve^1$	κ_X	0.80	0.80	-	
Arrhenius temperature	T_A	4927	3590	Κ	
Zoom factor	z	5.66 0.87		-	
Energy conductance ²	\dot{v}_b	$2.3e^{-02}$	$5.4e^{-03}$	$cm.d^{-1}$	
	\dot{v}_j	-	$5.6e^{-02}$	$cm.d^{-1}$	
Allocation fraction to soma	K	0.95	0.95	-	
Reproduction fraction fixed in $eggs^1$	K_R	0.95	0.95	-	
Volume specific costs of structure	$[E_G]$	4294	4282	$J.cm^{-3}$	
Maturation threshold for the trochophore larva	E_H^h	$3.33e^{-04}$	$1.55e^{-04}$	J	
Maturation threshold for birth	E_H^b	$3.33e^{-04}$	$6.98e^{-04}$	J	
Maturation threshold for metamorphosis	E_H^j	-	0.77	J	
Maturation threshold for puberty	E_H^p	248.07	300.70	J	
Weibull ageing acceleration	\ddot{h}_a	$4.99e^{-07}$	$2.11e^{-07}$	d^{-2}	
Gompertz stress coefficient	s_G	$4.26e^{-05}$	$7.73e^{-05}$	-	
Acceleration rate	s_M	-	10.29	-	
Maximum assimilation $rate^2$	$\{\dot{p}_{Am}\}_b$	233.76	13.47	$J.cm^{-2}.d^{-1}$	
	$\{\dot{p}_{Am}\}_j$	-	138.61	$J.cm^{-2}.d^{-1}$	
Specific somatic maintenance rate	$[\dot{p}_M]$	39.11	14.70	$J.cm^{-3}.d^{-1}$	
Maturity maintenance rate	\dot{k}_J	$2.00e^{-0.3}$	$2.00e^{-0.3}$	d^{-1}	

¹ The values were taken from the generalized animal (Kooijman, 2010) ² $\dot{v}_b = \dot{v}_j$ and $\{\dot{p}_{Am}\}_b = \{\dot{p}_{Am}\}_j$ for std-model and $\dot{v}_j = s_M \cdot \dot{v}_b$ and $\{\dot{p}_{Am}\}_j = s_M \cdot \{\dot{p}_{Am}^{33}\}_b$ for the abj-model

Parameter estimation

- ➢ Good fit : MRE 0.22 /SMSE 0.24
- Acceleration rate ~ 10
- > Zero-variate predictions: globally well fitted, except for some of the least reliable observations
- Uni-variate predictions globally well fitted to the observations

Data	Symbol (unit)	Observation	Prediction (RE)	Reference
Age at hatching	a _h (d)	7 (10°C)	7.85 (0.12)	Pers. comm. from S. Gaudron
Age at birth	a _b (d)	30 (12°C)	14.63 (0.51)	Guessed from Farke and Berghuis (1979)
Age at metamorphosis	a _j (d)	78 (12°C)	90.9 (0.17)	Guessed from Farke and Berghuis (1979)
Egg diameter	L ₀ (cm)	0.02 (13°C)	0.023 (0.13)	De Cubber et al. (2018)
Total length of the trochophore larva	L _h (cm)	0.025 (12°C)	0.022 (0.11)	Farke and Berghuis (1979)
Total length at birth	L _b (cm)	0.08 (12°C)	0.037 (0.54)	Guessed from Farke and Berghuis (1979)
Total length at metamorphosis	L _j (cm)	0.89 (12°C)	0.98 (0.10)	Farke and Berghuis (1979)
Wet weight of an egg	Ww _o (g)	4.78 ^{e-6} (13°C)	6.04 ^{e-6} (0.26)	This study

Zero-variate observations vs predictions

Data	Symbol	Value	Predictions (RE)		Unit	Beference
Data			std-model	abj-model	Ome	
age at hatching	a_h	7	2.912(0.58)	7.845(0.12)	d	Pers. comm. from S. Gaudron
age at birth	a_b	30	2.582(0.91)	14.63(0.51)	d	Farke and Berghuis (1979)
age at metamorphosis	a_j	78	-	90.9(0.17)	d	Farke and Berghuis (1979)
age at puberty	a_p	548	287.3(0.48)	292.5(0.47)	d	De Cubber et al. (2018)
lifespan	a_m	2190	2190(0.00)	2184(0.00)	d	Beukema and De Vlas (1979), De Cubber et al. (2018)
egg diameter	L_0	0.02	0.022(0.10)	0.023(0.13)	$^{\rm cm}$	Watson et al. (1998) , De Cubber et al. (2018)
total length of the trochophore larva	L_h	0.025	0.028(0.12)	0.022(0.11)	$^{\mathrm{cm}}$	Farke and Berghuis (1979)
total length at birth	L_b	0.08	0.028(0.65)	0.037(0.54)	$^{\mathrm{cm}}$	Farke and Berghuis (1979)
total length at metamorphosis	L_j	0.89	-	0.98(0.10)	$^{\mathrm{cm}}$	Farke and Berghuis (1979)
trunk length at puberty	TL_p	2.5	4.03(0.61)	3.84(0.54)	$^{\mathrm{cm}}$	De Cubber et al. (2018)
maximum trunk length	TL_i	34	24.73(0.27)	31.64(0.07)	$^{\mathrm{cm}}$	Pers. comm. from S. Gaudron (Sorbonne Univ.)
wet weight of an egg	Ww_0	$4.78 e^{-6}$	$5.62 e^{-6} (0.17)$	$6.036 e^{-6} (0.26)$	g	This study

Trunk length (cm)

Uni-variate observations vs predictions : shape

Total length (cm)

Trunk length (cm)

Uni-variate observations vs predictions

Uni-variate observations vs predictions : Growth

The abj-model gives better fit results

• Parameters values : 2 types of organisms

- MRE/SMSE 0.28/0.34 (std) 0.22/0.24 (abj) acceleration rate ~ 10
- Better zero-variate predictions for the early life-stages with the abj-DEB model
- The uni-variate predictions of both models are close after puberty

> Inferences on the scaled functional response f : experimental data

Inferences on the scaled functional response f : experimental data

Comparison of DEB parameters among Lophotrocozoans

Comparison of DEB parameters among Lophotrocozoans

- **Polychaeta** Mollusca A. marina (std) A. marina (abj)
 - For *A. marina*, main differences abj/std before metamorphosis
 - abj/std values of A. marina closer to the mollusks' values
 - Polychaetes' parameters were assessed without considering the early stages and are probably closer to the mollusks' values too

Model improvements

51