

IMPLEMENTING REALISTIC BIOLOGICAL VARIABILITY INTO AN INDIVIDUAL-BASED DEB MODEL FOR COPEPODS

Josef Koch, DEB2019 Symposium, 12 April 2019

WHY COPEPODS?

- Highly abundant in global oceans
- Largest animal biomass on earth?
- Essential in marine food webs

LIFE HISTORY

- 6 naupliar stages
- 6 copepodite stages
- Sexual reproduction

INDIVIDUAL-BASED DEB MODEL

Purpose:

Extrapolation of individual-level (toxic) effects to populations

ao

Δ

DEB CONTEXT COLLECTION APPLICATIONS

Nitokra_spinipes (Copepod): Results Code Links

Parameter values for this entry

Model: abp

Contents lists available at Scie

journal homepage: www.elsevier.c

ABSTRACT

The harpacticoid copepod Nitocra spinipes of multiple international testing guidelin

fects in this species, physiological models rooted in

Two dynamic energy budget models for the harp:

Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab),

Josef Koch*, Karel A.C. De Schamphelaere

spinipes

Keywords

Copepod Nitocra spinij

Dynamic (

ARTICLE INFO

G

Primary parameters at reference temperature (20 deg. C)				
symbo	value		units	description
T_A	3059.96		(Arrhenius temperature
p_Am	15.8588		/d.cm^2	{p_Am}, spec assimilation flux
F_m	6.5		d.cm^2	{F_m}, max spec searching rate
kap_X	0.8			digestion efficiency of food to reserve
kap_P	0.1			faecation efficiency of food to faeces
v	0.020316		m/d	energy conductance
kap	0.77611			allocation fraction to soma
kap_R	0.95			reproduction efficiency
p_M	592.71		/d.cm^3	[p_M], vol-spec somatic maint
p_T	0		/d.cm^2	{p_T}, surf-spec somatic maint
k_J	0.002		/d	maturity maint rate coefficient
E_G	4448.08		/cm^3	[E_G], spec cost for structure
E_Hb	0.0005939			maturity at birth
E_Hp	0.0328			maturity at puberty
h_a	3.311e-06		/d^2	Weibull aging acceleration
s_G	0.0001			Gompertz stress coefficient
Parameters specific for this entry at reference temperature (20 deg. C)				
symbol	value	units		description
E_Hj	0.004142	J	maturity at me	etam
K_hs	0.21248	mug C/mL	half-saturation	n coeffcient
del_M	0.86409	-	shape coeffic	ient

BIOLOGICAL VARIABILITY

- Drives desynchronization of populations
- Increases resilience to stress and environmental changes
- Is key to evolution
- Generally treated as measurement error in parameter estimation
- Some DEB-IBMs include variability but it is chosen rather arbitrarily

requency

Copepodite development (relative to mean)

ESTIMATING VARIABILITY

CHALLENGES

DEB parameters

 $\{\dot{p}_{Am}\}$

- Variation in all parameters?
- Covariation?
- Distribution types unknown

Find oneparameter solution

 \mathcal{K}_X

MEASURED DATA

GLOBAL SENSITIVITY ANALYSIS

First order effect indices: $S_i = \frac{V_{X_i} \left(E_{X_{\sim i}} \left(Y \mid X_i \right) \right)}{V(Y)} \quad \{ \dot{p}_{Am} \} > \kappa > [\dot{p}_M] > E_H^{\chi} > [E_G] > \mathcal{V}$

CONCLUSIONS

- Variability in DEB parameters can be estimated from experimental data using Monte Carlo simulations
- Distribution types unknown → assumptions must be made
- Fitting variability terms to multiple DEB parameters requires extensive control data sets and computation
- Adding variability to just one parameter can already provide a good approximation of observed variation in real data

... if the right parameter and probability distribution are selected

Josef Koch PhD Researcher

Thank you for your attention

Laboratory of Environmental Toxicology and Aquatic Ecology Environmental Toxicology Unit: GhEnToxLab

Email: josef.koch@ugent.be

www.ecotox.ugent.be www.ugent.be

- **f** Ghent University
- @GhEnToxLab & @UGent
- in Ghent University

