

Pêches et Océans Canada Fisheries and Oceans Canada

Effect of hypoxia on cod bioenergetics

Romain Lavaud^{1,2,3}, Yoann Thomas⁴, Laure Pecquerie⁴, Hugues Benoît⁵, Thomas Guyondet³, Jonathan Flye-Sainte-Marie⁶, Denis Chabot⁵

¹ Institut des Sciences de la MER de Rimouski (ISMER), Rimouski, QC, Canada
² Dalhousie University, Marine Affairs Program, Halifax, NS, Canada
³ Fisheries and Oceans Canada, Gulf Centre, Moncton, NB, Canada
⁴ Institute for Research and Development (LEMAR), Plouzané, France
⁵ Fisheries and Oceans Canada, Maurice Lamontagne Institute, Mont-Joli, QC, Canada
⁶ University of Western Brittany (LEMAR), Plouzané, France

DEB2019 1-12 April 2019 / Brest (France)

Introduction

Hypoxia in coastal marine systems is a growing phenomenon around the world, accelerated as a result of human activities. It is defined as a reduction of dissolved oxygen saturation levels (% DO sat.).

Effects of hypoxia at the physiological level include:

- Disturbance of the phenology (e.g. spawning time)
- Reduced growth
- Limitation of reproductive success
- Increased vulnerability to diseases

Introduction

The **Atlantic cod** is an iconic species facing important challenges from its changing **environment**, **human activities** and, in some populations, intense **predation**.

2 populations: north and south (different migration and residency patterns)

DO (% sat.) in the Gulf of Saint Lawrence

Introduction

Realized habitat of Atlantic cod in the northern Gulf of Saint Lawrence (nGSL).

Modeling hypoxia

Dynamic Energy Budget theory:

- Mechanistic and generic approach
- Full life cycle
- Scale transfer (population)
- Multi-stressor perspective

Thomas et al. (2018) identified that the main effect of hypoxia on the metabolic response of cod was on **ingestion**.

Objectives

Quantify the effect of hypoxia in two populations of Atlantic cod in the Gulf of Saint Lawrence

- 1) Disentangle the importance of **environmental variables**:
 - Temperature,
 - Food availability
 - DO saturation

on the energy buget of cod from each population

2) Investigate potential effects of hypoxia on life history traits

Methods

Arcik Ocean Greenfind Sea On explosite Sea On explosite Sea One explosite One explosite Sea One explosite One explosite Sea One explosite Sea One explosite One expl

Many identified **stocks** with contrasted life-history traits (Brander, 2005)

Arcto-Norwegian Baltic Celtic Sea Greenland Faroese Islands Iceland Irish Sea North Sea Scotland Scotian Shelf Northern Gulf of Saint-Lawrence Southern Gulf of Saint-Lawrence Southern Grand Bank Southern Newfoundland Northern Newfoundland and Labrador Gulf of Maine and Georges Bank

Methods

Re-estimation of parameters for our populations

Data

Annual monitoring surveys conducted in the nGSL since **1990** and in the sGSL since **1971**, providing:

- Length
- Wet mass
- Stomach content
- Temperature

Additional data for sGSL cod from a physiological condition monitoring conducted annually since 1992 (typically monthly in April and June–October) and January surveys of cod overwintering grounds in 1994 and 1995.

Modeling scenarios

Scenario S1: Reference scenario without implementing DO effect stomach content data already incorporate this effect

Scenario S2: Quantification of the temperature effect

imposing same temperature forcing to each population keeping other variables untouched

Scenario S3: quantification of the DO effect on growth

by removing the DO effect on ingestion, estimate the potential gain in growth ingested food is corrected by $1/c_{DO}$

Results

Good predictions from the model in reference scenario (S1)

From comparing S1 with S2 scenario we found that temperature explained 48% of the difference in length between populations and 59 % of the difference in mass

Results

Results

Impact of hypoxic conditions on cod life-history traits

Impact of hypoxic conditions on cod life-history traits

Impact of hypoxic conditions on cod life-history traits

Conclusions

Contrasted effects of Temperature and hypoxia in the nGSL population.

• Temperature seems to explain about half of the

difference between populations

- More data needed to ascertain the effect of DO
- Other pressures should be considered

(predation, evolution from fishing pressure)

Conclusions

Contrasted effects of Temperature and hypoxia in the nGSL population.

• Temperature seems to explain about half of the difference between populations

- More data needed to ascertain the effect of DO
- Other pressures should be considered

(predation, evolution from fishing pressure)

Further investigations

Tracking of individuals equipped with loggers

- High-resolution of individual trajectories of experiences conditions
- Comparison of different behaviours (migratory

vs. resident, coastal vs. deep dwellers)

Le Bris et al. 2013

Thank you!

Funding: NSERC Grant 4970652016, GDRi RECHAGLO

Seasonal stomachal content v Length

