

DEB theory and stable isotope dynamics:

exploring alternative ways

Sébastien Lefebvre, Marine Ballutaud, Carlos Martinez Del Rio, Laure Pecquerie

DEB Symposium 2019 April 10th Brest, France

Characters....

Sébastien Lefebvre,

Marine Ballutaud,

Carlos Martinez Del Rio,

Laure Pecquerie

Debbie the special guest Created by Anthonine

14 N 14.00307 99.63% Stable Stable

- Stable isotopes are twins with one extra neutron
- Usually the heavier is the rarer
- Carbon and nitrogen are the most used ones

12 C	¹³ C	14 C
12.00000	13.00335	14.0
98.89%	1.11%	t ¹ / ₂ = 5715yrs
Stable	Stable	

- Stable isotopes are twins with one extra neutron
- Usually the heavier is the rarer
- Carbon and nitrogen are the most used ones

The delta (δ) notation

- Variations in proportion are very little (For ¹³C: between 1.07 and 1.1 % !!)
- δ notation is a ratio (between sample and a reference/standard) of ratios (fraction of Heavy or Light isotopes)

$$\delta^{H}X = \left[\frac{R_{sample}}{R_{standard}} - 1\right] * 1000 \qquad R = \frac{F_{H}}{F_{L}}$$

Dual C, N isotopic plot

Dual C, N isotopic plot

3.2

Quantification of diet (or trophic position) is possible provided that:

1) Prey have different stable isotope ratios (or trophic baseline known)

2) The discrimination factor for each food source is known and constant

3) Isotopic equilibrium is reached

Quantification of diet (or trophic position) is possible provided that:

1) Prey have different stable isotope ratios (or trophic baseline known)

2) The discrimination factor for each food source is known and HICKN POINT constant

3) Isotopic equilibrium is reached

Burying our heads in the sand?

Level of organisation	Trophic inferences	Methods
Individual	Diet, Trophic position	Mixing models (Philipps and Gregs, 2003) Trophic position (Post 2002)
Population	Between and within individuals	Niche variation hypothesis, (Araujo et al., 2010)
Community	Structure of the food web	Isotope metrics (Layman et al., 2012)

More than 600 papers a year (isotope* and trophic ISI WOS)

individual

community

How to estimate discrimination and turnover

How to estimate discrimination and turnover

<u>Time- or growth-dependent models:</u> Fry and Arnold, 1982, Hobson et al., 1992, Heisslein et al., 1993, Carleton & Martinez Del Rio, 2010

How to estimate discrimination and turnover

Diet Switch Experiments + « phenomenological » incorporation models

<u>Few studies:</u> Only 2% of experimental studies (on average 12 on 600 per year)

Isotopists then refer to meta-analyses and crude mean values for discrimination and turnover rate

Isotopic distorsion?

In reality, Δ and λ are dynamic and depend on several confounding factors of which metabolism

But few mechanistic rules were put in evidence

 \rightarrow Need for mechanistic modelling

Mechanistic DIB modeling

2010

The impact of metabolism on stable isotope dynamics: a theoretical framework

Laure Pecquerie, Roger M. Nisbet, Ronan Fablet, Anne Lorrain and Sebastiaan A. L. M. Kooijman

Contents lists available at SciVerse ScienceDirect

Journal of Sea Research

journal homepage: www.elsevier.com/locate/seares

2011

JOURNAL OF SEA RESEARCH

Understanding the dynamics of δ^{13} C and δ^{15} N in soft tissues of the bivalve *Crassostrea* gigas facing environmental fluctuations in the context of Dynamic Energy Budgets (DEB)

A. Emmery ^{a,b,c,*}, S. Lefebvre ^c, M. Alunno-Bruscia ^a, S.A.L.M. Kooijman ^d

Aims

- Large number of factors and complexities of their interactions
- DIB mechanistic modelling is a comprehensive framework
- Portability of DIB in community applications is questionable (also populations in some extent?)
- Aim: developing a more simple model that can be paramatrised with DEB theory

IsoDyn model (a new model)

Nitrogen mass balance model

New features:

- Allometric growth (β)
- Two fractionations
- 4 parameters

Lefebvre et al., in preparation for Am Nat

IsoDyn model

Nitrogen mass balance model

dt

New features:

- Allometric growth (β)
- Two fractionations
- 4 parameters

Determinate growth:0.5<β<1</th>For 2/3 then Von Bertalanffyas explained by DEB theory

A system of two equations

$$W_{t} = \left\{ W_{\infty}^{1/3} + \left(W_{0}^{1/3} - W_{\infty}^{1/3} \right) e^{-\frac{r_{0}}{3}t} \right\}^{3} \qquad W_{\infty}^{1/3} = \frac{r_{i}}{r_{0}}$$
$$d\delta^{15}N = r W^{1-\beta} \left(s^{15}N - s^{15}N + \Lambda \right) = \Lambda$$

$$- \mathbf{r}_i \mathbf{w}_t \quad (\mathbf{0} \quad \mathbf{N}_{diet} - \mathbf{0} \quad \mathbf{N} + \Delta_i) - \Delta_0$$

Lefebvre et al., in preparation for Am Nat

How to calibrate IsoDyn from DEB?

How to calibrate IsoDyn from DEB?

How to calibrate IsoDyn from DEB?

Example: Neomysis integer (Opossum shrimp)

Data from Gorokhova 2018

An experiment with several food levels and isotopic incorporation dynamics

Parameters from AMP (abj model)

Adj functional scaled response

Example: Neomysis integer (Opossum shrimp)

Data from Gorokhova 2018

An experiment with several food levels and isotopic incorporation dynamics

Parameters from AMP (abj model)

Example: Neomysis integer (Opossum shrimp)

Data from Gorokhova 2018

An experiment with several food levels and isotopic incorporation dynamics

Parameters from AMP (abj model)

Isotopic half life (inverse of turnover rate)

Isotopic Half-life vs body mass (Muscle) → Allometric rule (slope=0.19)

Each point one exp and one species

Ectotherms (empty circles) Endotherms (full circles)

- Barbus_barbus
- ---- Carcharhinus_plumbeus
- Clupea_pallasii
- Danio_rerio
- Dicentrarchus_labrax
- Gadus_morhua
- Ictalurus_punctatus
- Mugil_liza
- Mycteroperca_microlepis
- Oncorhynchus_mykiss
- Oreochromis_niloticus
- Pomatoschistus_minutus
- Salvelinus_namaycush
- Thunnus_orientalis

Take home messages

- New model with allometry rules and two fractionations (in and out)
- All dynamics:

Discrimination (Δ) + incorporation rate (λ) + their interactions ($\Delta \cap \lambda$)

Portability is high

Take home messages

- New model with allometry rules and two fractionations (in and out)
- All dynamics:

Discrimination (Δ) + incorporation rate (λ) + their interactions ($\Delta \cap \lambda$)

Portability is high

Future directions

- Continue to re-interpret meta-analysis results (Δ and λ) using DEB through IsoDyn
- Add isotope dynamics in AMP (add my « iso »Pet)
- Produce R packages with links to AMP collection
- Using DIB as a reference to Isodyn (comparison)
- Most experimental studies done on tissues not on whole body...need for an extension of the DIB model (several structures)
- Isotopic routing (several reserves)

Join the team ! (Post-doc position offer http://log.cnrs.fr/Post-Doc-Position-ISIT_U)

Thanks

Thanks for your attention

Marine Ballutaud,

Thanks to DEB2019 organizing committee

Carlos Martinez Del Rio,

Laure Pecquerie

Debbie the special guest Created by Anthonine

Example: Pomatoschistus minutus (sand goby)

Comparing IsoDyn (DEB) with DIB

Sources of isotopic anamorphosis: Δ

Discrimination factor (or TEF or trophic fractionation...)

Quite numerous and descriptive values but few mechanistic rules

Sources of isotopic anamorphosis: λ

Isotopic turnover rate

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{\frac{k_M}{f+g} W_i^{\frac{1}{3}}} W^{\frac{1}{3}}$$

Existing models

Mechanistic

