Contribution of a bioenergetics model to investigate on growth and survival of European seabass in the Northeast Atlantic

Chloé Dambrine, Martin Huret, Mathieu Woillez, Laure Pecquerie, Romain Lopez, Hélène de Pontual

April 2019, Brest, France
Outline

• Introduction
• Model development
• Starvation ability of early life stages
• Impact of temperature and food on growth of early life stages
• Conclusion
Why working on European seabass?

Worrying state of the ICES « Northern stock » (since 2013)

→ European Commission set management measures (since 2015)
European seabass lifecycle

Introduction

Model development

Starvation effect

T & f effect

Conclusion

OFFSHORE

Drift

SPAWNING AREA

NURSERY

FEEDING AREA

COAST

Migration

Starvation effect

T & f effect
Still a lot of unknown concerning its lifecycle in the wild.

Studies have been carried out to better understand:
• the spatio-temporal structure of the population
• the recruitment process

➔ Would help to define management measures for a sustainable exploitation
Still a lot of unknown concerning its lifecycle in the wild.

Studies have been carried out to better understand:

- the spatio-temporal structure of the population
- the recruitment process (e.g. connectivity between spawning areas and nurseries)

Would help to define management measures for a sustainable exploitation
Modelling seabass lifecycle

- Life traits and their key drivers
- Population resilience
- Management & conservation strategies

Movements (e.g. connectivity)
Metabolic acceleration in Mediterranean Perciformes

Konstadia Lika a, b, Sebastiaan A.L.M. Kooijman b, Nikos Papandroulakis c

Show more

A DEB model for European sea bass (Dicentrarchus labrax): Parameterisation and application in aquaculture

Orestis Stavrakidis-Zachou a, b, Nikos Papandroulakis a, Konstadia Lika b

Show more

https://doi.org/10.1016/j.seares.2018.05.008
Journal of Sea Research
Volume 94, November 2014, Pages 37-46

Introduction
Model development
Starvation effect
T & f effect
Conclusion

aquaculture

Orestis Stavridis-Zachou a, b, Nikos Papandroulakis a, Konstadia Lika b

Show more

https://doi.org/10.1016/j.seares.2018.05.008
Egg – Non feeding larvae – Feeding larvae – Juveniles – Adults
Acceleration of growth for larvae
Reproduction between January and May
At the end of the reproduction season, $E_R = 0$
Calibration

14 parameters: \(\kappa, \{ \dot{p}_{Am} \}, \nu, \{ \dot{p}_M \}, [EG], E^h_H, E^b_H, E^j_H, E^p_H, \delta_{Mb}, \delta_{Mj}, TA, TAL, f \)

Covariance Matrix Adaptation Evolution Strategies (see e.g. Gatti et al., 2017)

\[
F_{cost} = \sum_{i}^{\text{stages variables}} \sum_{j} \frac{1}{n_{\text{obs} \ i, j}} \sum_{k}^{n_{\text{obs} \ i, j}} \left(\frac{x_{i,j,k} - y_{i,j,k}}{\sigma_{\text{obs} \ i, j}} \right)^2 + \sum_{l}^{\text{thresholds}} \left(\frac{x_l - z_l}{\sigma} \right)^2
\]
Calibration

14 parameters: $\kappa, \{\dot{p}_{Am}\}, \dot{v}, [\dot{p}_M], [EG], E^h_E, E^b_E, E^j_E, E^p_E, \delta_M, \delta_M, TA, TAL, f$

4 maturity thresholds

Covariance Matrix Adaptation Evolution Strategies (see e.g. Gatti et al., 2017)

$$F_{cost} = \sum_{i}^{stages \ variables} \sum_{j}^{variables} \frac{1}{n_{obs \ i,j}} \sum_{k}^{n_{obs \ i,j}} \left(\frac{x_{i,j,k} - y_{i,j,k}}{\sigma_{obs \ i,j}} \right)^2 + \sum_{l}^{thresholds} \left(\frac{x_l - z_l}{\sigma} \right)^2$$
Calibration

14 parameters: $\kappa, \{\hat{p}_{Am}\}, \hat{v}, [\hat{p}_M], [EG], E^h_H, E^b_H, E^j_H, E^p_H, \delta_{Mb}, \delta_{Mj}, TA, TAL, f$

4 maturity thresholds

<table>
<thead>
<tr>
<th>Stage « threshold »</th>
<th>Size (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatching</td>
<td>0.3 (Regner & Dulcic, 1993)</td>
</tr>
<tr>
<td>Mouth opening</td>
<td>0.6 (Kennedy & Fitzmaurice, 1972)</td>
</tr>
<tr>
<td>Metamorphosis</td>
<td>2 (Barnabé, 1990)</td>
</tr>
<tr>
<td>Maturity</td>
<td>42 (Drogou et al., 2017)</td>
</tr>
</tbody>
</table>

Covariance Matrix Adaptation Evolution Strategies (see e.g. Gatti et al., 2017)

$$F_{\text{cost}} = \sum_{i} \sum_{j} \frac{1}{n_{\text{obs} i,j}} \sum_{k} \left(\frac{x_{i,j,k} - y_{i,j,k}}{\sigma_{\text{obs} i,j}} \right)^2 + \sum_{l} \left(\frac{x_l - z_l}{\sigma} \right)^2$$
Calibration

14 parameters: $\kappa, \{\hat{p}_{Am}\}, \dot{v}, [\hat{p}_M], [EG], E_H^h, E_H^b, E_H^j, E_H^p, \delta_{Mb}, \delta_{Mj}, TA, TAL, f$

Covariance Matrix Adaptation Evolution Strategies (see e.g. Gatti et al., 2017)

$$F_{cost} = \sum_{i} \sum_{j} \frac{1}{n_{obs\ i,j}} \sum_{k} \left(\frac{x_{i,j,k} - y_{i,j,k}}{\sigma_{obs\ i,j}} \right)^2 + \sum_{l} \left(\frac{x_l - z_l}{\sigma} \right)^2$$
Calibration

14 parameters: $\kappa, \{\hat{p}_{Am}\}, \dot{v}, \{\hat{p}_M\}, [EG], E_H^b, E_H^j, E_H^p, \delta_{Mb}, \delta_{Mj}, TA, TAL, f$

Covariance Matrix Adaptation Evolution Strategies (see e.g. Gatti et al., 2017)

$$F_{cost} = \sum_{i} \sum_{j} \frac{1}{n_{obs\ i,j}} \sum_{k} \left(\frac{x_{i,j,k} - y_{i,j,k}}{\sigma_{obs\ i,j}} \right)^2 + \sum_{l} \left(\frac{x_l - z_l}{\sigma} \right)^2$$
Datasets

AQUACULTURE
- Length and weight data from 7 to 1600 days at 15°C
- $T = 15°C$
- $f = 1$ (ad libitum)

WILD
- Length and weight data from 6 months to 22 years from surveys and fish markets
- $T = \text{mean per days from tagged seabass}$
- $f = ?$ (calibrated)

Model development

Introduction

Starvation effect

$T \& f$ effect

Conclusion

Temperature (°C)

Datasets
Fitting the length

AQUACULTURE

Length and weight data from 7 to 250 days at 20°C

- T = 20°C
- f = 1 (ad libitum)

Length and weight data from 7 to 1600 days at 15°C

- T = 15°C
- f = 1 (ad libitum)

WILD

Length and weight data from 6 months to 22 years from surveys and fish markets

- T = mean per days from tagged seabass
- f = ? (calibrated)

Data

Model

0 – 8 months

0 – 4 years

0 – 22 years
Fitting the weight

AQUACULTURE
Length and weight data from 7 to 1600 days at 15°C

\[T = 15°C \]
\[f = 1 \text{ (ad libitum)} \]

WILD
Length and weight data from 6 months to 22 years from surveys and fish markets

\[T = \text{mean per days from tagged seabass} \]
\[f = ? \text{ (calibrated)} \]

Introduction

Model development

Starvation effect

T & f effect

Conclusion

0 – 8 months

0 – 4 years

0 – 22 years
Young seabass facing starvation
Young seabass facing starvation

Month at which starvation starts

Survival time

Month of birth

10/04/2019
Growth with T & f

\[f = 0.05 \]
f = 0.05

Minimal length observed in Bristol Channel and Celtic Sea nurseries (Jennings & Pawson, 1992)
Minimal length observed in Bristol Channel and Celtic Sea nurseries (Jennings & Pawson, 1992)
Introduction

Model development

Starvation effect

T & f effect

Conclusion

Minimal length observed in Bristol Channel and Celtic Sea nurseries (Jennings & Pawson, 1992)

\[f = 0.05 \]

\[f = 0.25 \]

\[f = 0.65 \]
Take home messages

• First DEB model calibrated for wild Atlantic European seabass
• Young life stages adapted for a drift in winter but need food on nurseries
• Rising temperatures help to survive low level of food
• Useful tool to study the connectivity between spawning areas and nurseries (on going work)
Thanks for your attention!

Any questions?

Fundings: