IMPLEMENTING REALISTIC BIOLOGICAL VARIABILITY INTO AN INDIVIDUAL-BASED DEB MODEL FOR COPEPODS

Josef Koch, DEB2019 Symposium, 12 April 2019
WHY COPEPODS?

– Highly abundant in global oceans
– Largest animal biomass on earth?
– Essential in marine food webs

Nitocra spinipes
LIFE HISTORY

- 6 naupliar stages
- 6 copepodite stages
- Sexual reproduction
INDIVIDUAL-BASED DEB MODEL

Purpose:
Extrapolation of individual-level (toxic) effects to populations
BIOLOGICAL VARIABILITY

- Drives desynchronization of populations
- Increases resilience to stress and environmental changes
- Is key to evolution
- Generally treated as measurement error in parameter estimation
- Some DEB-IBMs include variability but it is chosen rather arbitrarily
ESTIMATING VARIABILITY

- **DEB parameter(s)**
 - Start with a default variability term

- Run Monte Carlo simulations

- Simulated data
 - Loss function: Difference between distributions
 - $(1 - \text{KS test statistic})$

- Measured data

- Adjust variability term in parameters to minimize loss function
CHALLENGES

- Variation in all parameters?
- Covariation?
- Distribution types unknown

➢ Find one-parameter solution

DEB parameters

\[\nu, \kappa \]

\[[\dot{p}_M] \]

\[\{ \dot{F}_m \} \]

\[\{ \dot{p}_{Am} \} \]

\[\{ \dot{p}_T \} \]

\[E^b_H \]

\[E^j_H \]

\[E^p_H \]

\[\kappa_X \]

\[[E_G] \]

\[\kappa_R \]

\[\dot{k}_J \]
MEASURED DATA

Copepodite development time (relative to mean)

n = 610

Brood size (relative to mean)

n = 182
GLOBAL SENSITIVITY ANALYSIS

First order effect indices:

\[S_i = \frac{V_{X_i}(E_{X_i}(Y | X_i))}{V(Y)} \]

\[\{ \hat{p}_{Am} \} > \kappa > [\hat{p}_M] > E_H^x > [E_G] > v \]
BEST RESULT \[\{ \hat{p}_{Am} \} \] \[\text{cv} = 0.18 \]

Simulation

Measured Data

Copepodite development time

Brood size

\[n = 10^6 \]

\[n = 10^6 \]

\[n = 610 \]

\[n = 182 \]
CONCLUSIONS

- Variability in DEB parameters can be estimated from experimental data using Monte Carlo simulations
- Distribution types unknown \Rightarrow assumptions must be made
- Fitting variability terms to multiple DEB parameters requires extensive control data sets and computation
- Adding variability to just one parameter can already provide a good approximation of observed variation in real data
 … if the right parameter and probability distribution are selected

YOU MUST CHOOSE...

BUT CHOOSE WISELY.
Thank you for your attention

Josef Koch
PhD Researcher

Laboratory of Environmental Toxicology and Aquatic Ecology
Environmental Toxicology Unit: GhEnToxLab

Email: josef.koch@ugent.be

www.ecotox.ugent.be
www.ugent.be

Ghent University
@GhEnToxLab & @UGent
Ghent University