Impact of environmental stressors on organisms: Combining experimental and modelling approaches

DEB2019 Workshop, Brest, France

Jonathan FLYE-SAINTE-MARIE
and the Brest DEB group and Students

Université de Bretagne Occidentale,
Laboratoire des Sciences de l’Environnement Marin

April 9, 2019
Local context very dynamic in Marine Sciences (human sciences, physics, ecology...): ISblue

LEMAR : Interdisciplinary lab. grouping ecologists, biologists, biogeochemists, chemists, physicists and environmental jurists.

Among ecologists and biologists, various approaches :
 - Integration scales : molecular to ecosystem approaches
 - Field observations and experimentation, lab. experimental approaches and modelling.
Announcement!

Post-doctoral fellowship in Marine Sciences

- 2-years fellowships (+ support money)
- Original research project relevant to ISblue research priorities
- Propose collaboration with a local host
- Application deadline: Friday 3rd May, 2019
- More information at: https://www.isblue.fr/funding-opportunities/
Introduction and objectives of the talk

Brest DEB group research

How **environmental variability** controls **life-traits** of fishes and bivalves?

Environmental variability:
- Temperature
- Available food
- Environmental stressors:
 - Disease
 - Toxic algae
 - Deoxygenation
 - pH...

Individual life-traits:
- Growth
- Reproduction
- Mortality
- Dispersal...

Populations
Brest DEB group approach

Introduction and objectives of the talk

Field observation / experimentation

Laboratory experiments

Modelling

Combining experimental and modelling...
My research

Ecology of marine benthic organisms, mainly bivalves, some of my pets:

- *Ruditapes philippinarum*
- *Mytilus edulis*
- *Pecten maximus*
- *Argopecten purpuratus*
- *Magallana (Crassotrea) gigas*
- *Mimachlamys varia*

Combining field, experimental and modelling approaches.
Objectives of the talk

1. Present our approach for the integration of environmental stressors (other than toxicants) in DEB models

2. (Try to) give advices for designing experiments producing useful data for DEB models
 \[\rightarrow\] influenced by Brest’s marine pets

3. Stimulate discussions in order to better integrate experimental and modelling approaches
General workflow

Field
1. Characterization of environmental variability and identification of stressors (monitoring)
1bis. Monitor growth, reproduction, mortality... (experiment)

Laboratory (controlled conditions)
2bis. Designing realistic experiments to (try) to evaluate the effects stressor(s) on the organism.

Model
2. From literature, identify what are the expected effects of the stress, try to figure out how to integrate them into the model.
2ter. Building the standard (unstressed) model and estimate parameters (the earlier the better!)

Model
3. Integration of the stress into the model (stressor becomes a forcing variable)

Model
4. Use field monitoring to force your model
5. Compare the outputs to growth and reproduction monitoring
General workflow

1. Characterization of environmental variability and identification of stressors (monitoring)
2. From literature, identify what are the expected effects of the stress, try to figure out how to integrate them into the model.
3. Integration of the stress into the model (stressor becomes a forcing variable)
4. Use field monitoring to force your model
5. Compare the outputs to growth and reproduction monitoring

1bis. Monitor growth, reproduction, mortality... (experiment)
2bis. Designing realistic experiments to (try) to evaluate the effects stressor(s) on the organism.
2ter. Building the standard (unstressed) model and estimate parameters (the earlier the better!)
Field monitoring

What are the useful data?

- Long-term monitoring of environmental variables
 - Temperature
 - Proxies of food density: typically difficult (chlorophyll, phytoplankton count, particulate organic matter...)
 - Potential stressors: oxygen, salinity, toxic algae, pH,...

- Long-term biological monitoring
 - Growth (length, weight)
 - Reproduction (GSI)
 - Potential stressors: disease, phycotoxins...
Field monitoring

What are the useful data?

- Long-term monitoring of environmental variables
 - Temperature
 - Proxies of food density: typically difficult (chlorophyll, phytoplankton count, particulate organic matter...)
 - Potential stressors: oxygen, salinity, toxic algae, pH,...

- Long-term biological monitoring
 - Growth (length, weight)
 - Reproduction (GSI)
 - Potential stressors: disease, phycotoxins...

Difficulties:

- Very important effort: trade-off between the quantity of data and the cost
- Take care that the monitoring protocol don’t disturbs growth
- Prefer long term to short term monitoring (uncertainty on initial conditions)
The experiment(s) will consist in exposing organisms to a stress.

Field environmental data help to defined relevant stress levels to test:
 - Control (no stress)
 - Realistic stress (field monitoring)
 - Expected (ex. global change)

What to measure?

How long should be the experiment?

In which feeding conditions?

...
Designing useful experiments for DEB modelling

- The experiment(s) will consist in exposing organisms to a stress
- Field environmental data help to defined relevant stress levels to test:
 - Control (no stress)
 - Realistic stress (field monitoring)
 - Expected (ex. global change)

- What to measure ?
- How long should be the experiment ?
- In which feeding conditions ?
- ...

You first need to have idea of how to proceed for modelling your stress !

Modelling has to be an early process in the workflow !

⇒ Early dialogue between modelling and experiment is useful !
Expected effects of stress on the energy budgets?

- Indirect cost (negative effect on feeding processes)
- Direct costs (stress implies an additional energy demand)
- Modification of energy use (allocation or mobilization)
- More likely a combination!
Integrating env. stressors in DEB models

Expected effects of stress on the energy budgets?

- Indirect costs: stress induces a decrease in feeding activity (temporary/long term?)

![Graph showing clearance rate vs. disease stage](image1)

Increasing disease intensity

![Graph showing clearance rate vs. time](image2)

Pousse et al. (2018)

Rudistas philippinarum
Expected effects of stress on the energy budgets?

- Indirect costs: stress induces a decrease in feeding activity (temporary/long term ?)

Very frequent in bivalves!

→ Directly measurable
⇒ Reduction of energy inputs
⇒ Should affect negatively growth and reproduction (under fed conditions)
Expected effects of stress on the energy budgets?

- **Direct costs**: stress implies an additional energy demand

![Graph showing the effect of stress on energy budget](graph.png)

Figure: Flye-Sainte-Marie et al. (2009)

Species: *Ruditapes philippinarum*
Expected effects of stress on the energy budgets?

- Direct costs: stress implies an additional energy demand

 \[\text{Flesh dry weight (g)} \]

 \[\text{Time (days)} \]

 \[\text{Asymptomatic clams} \]
 \[\text{Heavy symptomatic clams} \]

 \[\text{Ruditapes philippinarum} \]

 - Difficult to measure directly!
 - But can be evidenced by differential weight loss under starvation
 - Sub-individual data may be also useful
 - Should also affect growth and reproduction under fed conditions
Expected effects of stress on the energy budgets?

- Modification of energy mobilization or allocation

![Graph showing shell height and condition index over time under different conditions.](Argopecten purpuratus)

Decrease of energy mobilisation under hypoxia?
Integrating env. stressors in DEB models

Expected effects of stress on the energy budgets?

- Modification of energy mobilization or allocation

\[\text{Shell height (mm)}\]

\[\text{Condition index (g cm}^{-3}\text{)}\]

\[0 \quad 5 \quad 10 \quad 15 \quad 20\]

\[0.006 \quad 0.008 \quad 0.010\]

\[\text{Food–Normoxia (F–N)}\]

\[\text{Food–Hypoxia (F–H)}\]

Decrease of energy mobilisation under hypoxia ?

→ Difficult to measure directly !

→ Effects depending of the mode of action of the stressor

→ Sub-individual data may be also useful
How to integrate them in DEB models?

Same approach than for toxicants.

- Temperature
- Food
- Reserve E
- Structure V
- Maturity & reproduction E_R

Organism

\dot{V}
$
\kappa \dot{p}_C
$
$(1 - \kappa) \dot{p}_C$

Faeces

Somatic maintenance
Maturity maintenance
Gametes
How to integrate them in DEB models?

Same approach than for toxicants.

Model parameters become (variables) dependent on stress intensity
Allows to account for transitory effects of stress
Relating parameter value to stress intensity

\[\text{par}_{\text{stressed}} = \text{par}_{\text{unstressed}} \times C_{\text{stress}}(\text{stress intensity}) \]

What function relates stress correction to stress intensity?
Relating parameter value to stress intensity

$$\text{par}_{\text{stressed}} = \text{par}_{\text{unstressed}} \times C_{\text{stress}}(\text{stress intensity})$$

What function relates stress correction to stress intensity?

- Semi-empirical approach (empirical function):
 - No that satisfying on a theoretical point of view
 - But generally allows low number of parameters
Integrating env. stressors in DEB models

Relating parameter value to stress intensity

\[\text{par}_{\text{stressed}} = \text{par}_{\text{unstressed}} \times C_{\text{stress}}(\text{stress intensity}) \]

What function relates stress correction to stress intensity?

- Mechanistic approach:
 - Going deeper into the processes and try to build up a mechanistic function:
 - Our perspective for taking into account of the effects of oxygen (model based on supply and demand of oxygen)
 - More satisfying!
 - More parameters?
 - Use of SU’s
While conceiving experiments take care to:

Time scales:

- **Experiments**: time consuming and expensive
 → the shorter the better

- **DEB models the full life cycle**
 → long term processes, the longer the better

- **Small effect**: slow drift between stressed and control
 → combined to inter-indiv. variability: long time to evidence effect
While conceiving experiments take care to:

Time scales:

- Experiments: time consuming and expensive → the shorter the better
- DEB models the full life cycle → long term processes, the longer the better
- Small effect: slow drift between stressed and control → combined to inter-indiv. variability: long time to evidence effect

⇒ Short term responses may not be always useful
⇒ Long experiment: more compatible with DEB time scales; evidence smaller effects.
⇒ Trade-off between practicals aspects of the experiment (time, number of conditions, cost...) and the expected data.
While conceiving experiments, take care to:

Initial conditions and measurements:

- The smallest the individuals the highest their growth rate
 - Best starting with small individuals to evidence growth differences
- In DEB biomass is partitioned into V, E, E_R
 - If you only know weight:

![Graph showing DFM (g) over time for different initial conditions](image)

Best to measure: weight (WW, DW), length and gonad content to constrain partitioning at the beginning of a simulation.
While conceiving experiments, take care to:

Feeding rates and food conditions

- Fed and starved conditions may help to disentangle effects of stress → combining these conditions is useful
- Fed condition should differ from starved one → sufficient feeding is required
- Measurements of food intake will also help to disentangle effects of stress
While conceiving experiments, take care to:

Feeding rates and food conditions
- Fed and starved conditions may help to disentangle effects of stress → combining these conditions is useful
- Fed condition should differ from starved one → sufficient feeding is required
- Measurements of food intake will also help to disentangle effects of stress

Temperature
- Temperature affects all rates → working at sufficiently high temperature will allow faster drift between stressed and unstressed condition
- Temperature itself should not be a stress → don’t work too close to the upper limit of tolerance range
While conceiving experiments, take care to:

Sub-individual measurements/observation
- Histology
- Gene expression
- Proteomics
- ...

⇒ might help to evidence / disentangle the effects of stress

The data won’t be integrated to the DEB model
⇒ help in identifying what are the processes that are impaired in the model

Integration of sub-individual measurements has to be thought early in the conception of the experiments
Conclusions

Take home message

- Similarly to toxicants the effect environmental stressors can be integrated to DEB models
- Combining field observation, laboratory experiments and modelling is useful for better understanding the effects of environmental stressors on organisms life-traits
- Modelling should not be thought as an end process:
 - don’t forget this when you apply for research funds!
 - Grab data and see which model you will be able to do with is a bad strategy!
 - Early dialogue between modelling and experimental approaches is useful
- Take care to time scales, initial conditions, feeding and temperature
- Combining your experiment with sub-individuals measurements will probably be helpful!