

Impact of environmental stressors on organisms: Combining experimental and modelling approaches DEB2019 Workshop, Brest, France

Jonathan FLYE-SAINTE-MARIE and the Brest DEB group and Students

Université de Bretgne Occidentale, Laboratoire des Sciences de l'Environnement Marin

April 9, 2019

Laboratory of Environmental Marine Sciences

- Local context very dynamic in Marine Sciences (human sciences, physics, ecology...): ISblue
- LEMAR : Interdisciplinary lab. grouping ecologists, biologists, biogeochemists, chemists, physists and environmental jurists.
- Among ecologists and biologists, various approaches :
 - Integration scales : molecular to ecosystem approaches
 - Field observations and experimentation, lab. experimental approaches and modelling.

Announcement !

Isplue The interdisciplinary graduate school for the blue planet

Post-doctoral fellowship in Marine Sciences

- 2-years fellowships (+ support money)
- Original research project relevant to ISblue research priorities
- Propose collaboration with a local host
- Application deadline: Friday 3rd May, 2019
- More information at : https://www.isblue.fr/funding-opportunities/

Brest DEB group research

How environmental variability controls life-traits of fishes and bivalves?

Introduction and objectives of the talk

Brest DEB group approach

J. Flye-Ste-Marie (UBO - IUEM - LEMAR) Combining experimental and modelling...

My research

Ecology of marine benthic organisms, mainly bivalves, some of my pets:

Ruditapes philippinarum

Mytilus edulis

Pecten maximus

Argopecten purpuratus

Magallana (Crassotrea) gigas

Mimachlamys varia

Combining field, experimental and modelling approaches.

Objectives of the talk

- Present our approach for the integration of environmental stressors (other than toxicants) in DEB models
- (Try to) give advices for designing experiments producing useful data for DEB models
 → influenced by Brest's marine pets
- Stimulate discussions in order to better integrate experimental and modelling approaches

General workflow

General workflow

Field monitoring

What are the useful data ?

• Long-term monitoring of environmental variables

- Temperature
- Proxies of food density : typically difficult (chlorophyll, phytoplankton count, particulate organic matter...)
- Potential stressors : oxygen, salinity, toxic algae, pH,...
- Long-term biological monitoring
 - Growth (length, weight)
 - Reproduction (GSI)
 - Potential stressors : disease, phycotoxins...

Field monitoring

What are the useful data ?

• Long-term monitoring of environmental variables

- Temperature
- Proxies of food density : typically difficult (chlorophyll, phytoplankton count, particulate organic matter...)
- Potential stressors : oxygen, salinity, toxic algae, pH,...
- Long-term biological monitoring
 - Growth (length, weight)
 - Reproduction (GSI)
 - Potential stressors : disease, phycotoxins...

Difficulties:

- Very important effort : trade-off between the quantity of data and the cost
- Take care that the monitoring protocol don't disturbs growth
- Prefer long term to short term monitoring (uncertainty on initial conditions)

Designing useful experiments for DEB modelling

- The experiment(s) will consist in exposing organisms to a stress
- Field environmental data help to defined relevant stress levels to test:
 - Control (no stress)
 - Realistic stress (field monitoring)
 - Expected (ex. global change)
- What to measure ?
- How long should be the experiment ?
- In which feeding conditions ?

• ...

Designing useful experiments for DEB modelling

- The experiment(s) will consist in exposing organisms to a stress
- Field environmental data help to defined relevant stress levels to test:
 - Control (no stress)
 - Realistic stress (field monitoring)
 - Expected (ex. global change)
- What to measure ?
- How long should be the experiment ?
- In which feeding conditions ?
- ...

You first need to have idea of how to proceed for modelling your stress ! Modelling has to be an early process in the workflow !

 \Rightarrow Early dialogue between modelling and experiment is usefull !

- Indirect cost (negative effect on feeding processes)
- Direct costs (stress implies an additional energy demand)
- Modification of energy use (allocation or mobilization)
- More likely a combination !

 Indirect costs: stress induces a decrease in feeding activity (temporary/long term ?)

 Indirect costs: stress induces a decrease in feeding activity (temporary/long term ?)

Very frequent in bivalves !

- \rightarrow Directly measurable
- \Rightarrow Reduction of energy inputs
- \Rightarrow Should affect negatively growth and reproduction (under fed conditions)

• Direct costs : stress implies an additional energy demand

• Direct costs : stress implies an additional energy demand

- \rightarrow Difficult to measure directly !
- \rightarrow But can be evidenced by differential weight loss under starvation
- \rightarrow Sub-individual data may be also useful
- \Rightarrow Should also affect growth and reproduction under fed conditions

Modification of energy mobilization or allocation

Decrease of energy mobilisation under hypoxia ?

• Modification of energy mobilization or allocation

Decrease of energy mobilisation under hypoxia ?

- \rightarrow Difficult to measure directly !
- \rightarrow Effects depending of the mode of action of the stressor
- \rightarrow Sub-individual data may be also useful

How to integrate them in DEB models ?

Same approach than for toxicants.

How to integrate them in DEB models ?

Same approach than for toxicants.

Model parameters become (variables) dependent on stress intensity Allows to account for transitory effects of stress

J. Flye-Ste-Marie (UBO - IUEM - LEMAR) Combining experimental and modelling...

Relating parameter value to stress intensity

 $par_{stressed} = par_{unstressed} \times C_{stress}(stress intensity)$

What function relates stress correction to stress intensity ?

Relating parameter value to stress intensity

 $par_{stressed} = par_{unstressed} \times C_{stress}(stress intensity)$

What function relates stress correction to stress intensity ?

Semi-empirical approach (empirical function):

- No that satisfying on a theoretical point of view
- But generally allows low number of parameters

Relating parameter value to stress intensity

 $par_{stressed} = par_{unstressed} \times C_{stress}(stress intensity)$

What function relates stress correction to stress intensity ?

• Mechanistic approach :

Going deeper into the processes and try to build up a mechanistic function:

- Our perspective for taking into account of the effects of oxygen (model based on supply and demand of oxygen)
- More satisfying !
- More parameters ?
- Use of SU's

Time scales :

- Experiments : time consuming and expensive
 → the shorter the better
- DEB models the full life cycle
 - \rightarrow long term processes, the longer the better
- Small effect : slow drift between stressed and control
 - \rightarrow combined to inter-indiv. variability : long time to evidence effect

Time scales :

- Experiments : time consuming and expensive \rightarrow the shorter the better
- DEB models the full life cycle
 - \rightarrow long term processes, the longer the better
- Small effect : slow drift between stressed and control
 - \rightarrow combined to inter-indiv. variability : long time to evidence effect

- \Rightarrow Short term responses may not be always useful
- \Rightarrow Long experiment: more compatible with DEB time scales; evidence smaller effects.
- \Rightarrow Trade-off between practicals aspects of the experiment (time, number of conditions, cost...) and the expected data.

Initial conditions and measurements:

- The smallest the individuals the highest their growth rate
 → Best starting with small individuals to evidence growth differences
- In DEB biomass is partitioned into V, E, E_R

Best to measure : weight (WW, DW), length and gonad content to constrain partitioning at the beginning of a simulation.

Feeding rates and food conditions

- Fed and starved conditions may help to disentangle effects of stress \rightarrow combining these conditions is useful
- Fed condition should differ form starved one \rightarrow sufficient feeding is required
- Measurements of food intake will also help to disentangle effects of stress

Feeding rates and food conditions

- Fed and starved conditions may help to disentangle effects of stress \rightarrow combining these conditions is useful
- Fed condition should differ form starved one \rightarrow sufficient feeding is required
- Measurements of food intake will also help to disentangle effects of stress

Temperature

- Temperature affects all rates
 - \rightarrow working at sufficiently high temperature will allow faster drift between stressed and unstressed condition
- Temperature itself should not be a stress
 - \rightarrow don't work too close to the upper limit of tolerance range

Sub-individual measurements/observation

- Histology
- Gene expression
- Proteomics
- ...
- \Rightarrow might help to evidence / disentangle the effects of stress

The data won't be integrated to the DEB model \rightarrow help in identifying what are the processes that are impaired in the model

Integration of sub-individual measurements has to be thought early in the conception of the experiments

Take home message

- Similarly to toxicants the effect environmental stressors can be intergated to DEB models
- Combining field observation, laboratory experiments and modelling is useful for better understanding the effects of environmental stressors on organisms life-traits
- Modelling should not be thought as an end process :
 - \rightarrow don't forget this when you apply for research funds !
 - Grab data and see which model you will be able to do with is a bad strategy !
 - Early dialogue between modelling and experimental approaches is useful
- Take care to time scales, initial conditions, feeding and temperature
- Combining your experiment with sub-individuals measurements will probably be helpful !